

Computational Astrophysics

Violeta González Pérez

2022

Computational Astrophysics

Introduction to Computational AstrophysicsGravity Solver, Tree codesConcepts of High-Performance ComputingDirect simulationNumerical methodsEulerian methods: PM

Numerical Integration

Solving ordinary differential equations

Summary of Astrophysical processes

Boltzman equation for a system of N-bodies

Gravity

(Magneto-)Hydrodynamics

What is your background?

Direct simulation Eulerian methods: PM, AMR Lagrangian methods: trees and multiple expansions Hybrid methods: TreePM, (A)P3M Gravity Solver, Grid codes Eulerian methods: AMR Lagrangian methods: SPH

Have you programmed before? What about C? and in parallel? What do you want out of this course? (the coding tutorials are higly adaptable!)

Computational Astrophysics: Lecturers

- Prof. Alexander Knebe, Mod. 8 316, alexander.knebe@uam.es
- Dr. Daniel Ceverino, Mod. 8 303, daniel.ceverino@uam.es
- Prof. Gustavo Yepes, Mod. 8 307, gustavo.yepes@uam.es
- Dr. Violeta González Pérez, Mod. 8 314, violeta.gonzalez@uam.es

Computational Astrophysics: Summary guide

- Course website: http://popia.ft.uam.es/aknebe/page3/compastro
- Theory on Thursdays (15pm to 17pm).
- Coding Tutorials on Fridays (12 to 14pm), except the first week.
- Classes will take place in Aula 01.15.SS.201
- Evaluation in 2 parts that need to be passed independently:
 - Attempt to solve 3 problems (50%):
 - 1. The Mandelbrot series.
 - 2. The difference between two distinct integration schemes for the equations of motion for two self gravitating bodies.
 - 3. A 1D code for solving the equations of gas dynamics using the Lagrangian SPH method.
 - Individual project (50%), it can consist of:
 - a) Using an existing professional code for the study of an astrophysical system (solar system, galaxy collision, cosmic structure formation).
 - b) Write your own code for approaching a physical phenomenon.
 - c) Literature research about one of the topics of the course.

Computational Astrophysics: Schedule

ACO classes 2021/22

day	date	time	teacher	topic	comments			
Thu	24/03/2022	15-17	VGP	Introduction				
Fri	25/03/2022	12-14	VGP	HPC				
Thu	31/03/2022	15-17	VGP	Numerics Review				
Fri	01/04/2022	12-14	AK	Coding Tutorial				
Thu	07/04/2022	15-17	VGP	Physical Processes				
Fri	08/04/2022	12-14	AK	Coding Tutorial	Mandelbrot handout, Project discussion			
Thu	14/04/2022				semana santa			
Fri	15/04/2022				semana santa			
Thu	21/04/2022	15-17	VGP	Tree Codes				
Fri	22/04/2022	12-14	AK	Coding Tutorial	Kepler handout, Mandelbrot solution			
Thu	28/04/2022	15-17	DC	grid N-body	SPH handout, Kepler solution			
Fri	29/04/2022	12-14	AK	Coding Tutorial				
Thu	05/05/2022	15-17	GY	Hydrodynamics				
Fri	06/05/2022	12-14	AK	Coding Tutorial				
Thu	12/05/2022	15-17	GY	Hydrodynamics				
Fri	13/05/2022	12-14	АК	Coding Tutorial				
Thu	19/05/2022	15-17	GY	Hydrodynamics				
Fri	20/05/2022	12-14	AK	Coding Tutorial	SPH discussion			
Thu	26/05/2022		all	project presentations				
teachers	Alexander Knebe (Al	(), Violeta Gonzalez-F	Perez (VGP), Gustavo	Yepes (GY), Daniel Ceverino (DC)			

Coding tutorials: weekly excersises

000	$\langle \rangle$	popia.ft.uam.es	t đ										
	Wunschzettel Dict-EN	Dict-ES Astro VUAM V MAD V Lifestyle V Mac V Mail V Banking V Misc V Movies V Newspaper V Music V Shopping V Anja V	AK										
Computational astrophysics +													
		COMPUTATIONAL ASTROPHYSICS											
		back to Teaching The course is a mixture between actual class room lectures and hands-on coding exercises. hands-on exercises: Makefile helic world didint foverflow pointre army 10 porter army 10 underson 10 improved parallel recursion 11 structures army of structures army of structures underson inter index() usage UC (DarMatterHalos.LX) made to the structure willitys / utilitych											

Evaluation: attempt to write code for 3 problems (50%)

In order to pass this subject you need to attempt the following 3 excersises:

000	$\langle \rangle$ [р	opia.ft.ua	ım.es			Ċ				₫	(î)
	Wunschzettel	Dict-EN	Dict-ES	Astro ~	UAM V	MAD V	Lifestyle 🗸	Mac v	Mail 🗸	Banking ~	Misc v	Movies ~	Newspaper ~	Music v	Shopping \vee	Anja ~	AK	
				halla				Compu	tational as	strophysics								-
				nelio stdiini fover point array paral impro struc struc struc funct index qsort I/O ([read_ exam utility my.c	wond t flow er 1D 3D lel recursi vved para tures s of struc ture point ion point cx() usage arkMatte _mtree (M sple for va .c / utility, / my.h	ion 1D Illel recursi ier ar rHaloes.tx ergerTree. Ilgrind h	on 1D t) txt)											
			(home Mano Keple SPH	ework ex delbrot co er probler code (spi	ercises: ide (mande n (kepler.p n.pdf)	elbrot.pdf) df)]-	$\rightarrow h$	omewc and the	ork ex ir sol	ercise: utions	5					

Evaluation: individual projects (50%)

You can also come up with your own project. Talk to us!

Students will only be permitted to attend the retake exam if they fail one or both of the evaluable parts (excersises and project). The retake exam will be a written exam, lasting 2 hours. No books will be permitted.

Coding in C

To compile, in general, you will be using the **Makefile** provided in the course website: http://popia.ft.uam.es/aknebe/page3/files/ComputationalAstrophysics/ exercises/Makefile.

(COMPUTATIONAL ASTROPHYSICS
H	OME LECTURES EXERCISES PROJECT TEACHER
	Programming Guides (by Steffen Knollmann): C tutorial parallel programming guide
idad Autónoma rid	Books "Computer Simulations using Particles", R.W. Hockney & J.W. Eastwood "Gravitational N-Body Simulations: Tools and Agorithms", S. Aarseth

Coding in C: set-up

Throughout this course, you are going to do hands-on coding in C. Thus, you will need to install on your laptop:

- The gcc compiler:
 - Mac: http://hpc.sourceforge.net/.
 - Other OS: https://gcc.gnu.org/.
- A way to write your code:
 - In Linux and Mac you have already available a Terminal application and an editor (vi, emacs, gedit, etc.).
 - In Windows you could install the Windows Subsystem for Linux (WLS), use Visual Studio or an other integrated development environment (IDE) or even use the virtual linux in the UAM virtual PCs (you will need the UAM VPN) plus OneDrive; https://servidorlibreuam.com/pc-virtual-de-la-uam/.

What tools are you going to use?

Do you know what you're going to use? Do you want to clarify any of the above now?

