Alexander Knebe (Universidad Autonoma de Madrid)

"It's somewhere between a nova and a supernova -- probably a pretty good nova."

- biased galaxy formation
- internal baryonic processes:
 - supernova feedback
 - active galactic nuclei feedback
- dwarf galaxies

- internal baryonic processes:
 - supernova feedback
 - active galactic nuclei feedback
- dwarf galaxies

biased galaxy formation

galaxy formation depends on...

• halo formation history

dark matter halo merger tree

Galaxy Formation biased galaxy formation galaxy formation depends on... dark matter halo merger tree • halo formation history • baryonic physics time Reincorporation **Hot Gas** Cooling Reheating **Ejected Gas Stars Ejection Star Formation** Recycling Cold Gas \rightarrow

Galaxy Formation biased galaxy formation galaxy formation depends on... dark matter halo merger tree • halo formation history • baryonic physics • radiative processes time Reincorporation **Hot Gas** Cooling Reheating **Ejected Gas Stars Ejection** Recycling **Star Formation** Cold Gas \rightarrow

dark matter halo merger tree

something prevented star formation in low- and high-mass galaxies?

dark matter halo merger tree

biased galaxy formation

Internal baryonic processes:

- supernova feedback
- active galactic nuclei feedback
- dwarf galaxies

- biased galaxy formation
- Internal baryonic processes:
 - supernova feedback
 - active galactic nuclei feedback
- dwarf galaxies

internal baryonic processes

supernova feedback

(artist's conception of SN2016aps, the most powerful supernova ever found)

supernova feedback

- stellar evolution
- relevance for galaxy formation and cosmology

in order to form stars **cold** gas is required (remember f_b)!

extremely energetic events possibly influencing galaxy evolution !?

internal baryonic processes

extremely energetic events possibly influencing galaxy evolution!

• ejection, heating, and enrichment

• ejection?, heating, and enrichment

• ejection, heating, and enrichment

• eject mass from galaxy centre, i.e. giving it kinetic energy beyond escape velocity:

$$E_{kin,ej} = \frac{1}{2} M_{ej} v_{esc}^2$$

• where the escape velocity is approx.

$$v_{esc}^2 = \frac{2GM_{vir}}{R_{vir}}$$

• ejection, heating, and enrichment

• eject mass from galaxy centre, i.e. giving it kinetic energy beyond escape velocity:

$$E_{kin,ej} = \frac{1}{2}M_{ej}v_{esc}^2$$

• where the escape velocity is approx.

$$E_{kin,ej} = M_{ej} \frac{GM_{vir}}{R_{vir}} = M_{ej}V_{vir}^2$$

$$v_{esc}^2 = \frac{2GM_{vir}}{R_{vir}}$$

• ejection, heating, and enrichment

• eject mass from galaxy centre, i.e. giving it kinetic energy beyond escape velocity:

$$E_{kin,ej} = \frac{1}{2} M_{ej} v_{esc}^{2}$$

city is approx.
$$v_{esc}^{2} = \frac{2GM_{vir}}{R_{vir}}$$

• where the escape velocity is approx.

$$v_{esc}^2 = \frac{2GM_{vir}}{R_{vir}}$$

available energy from SN

$$E_{fb} = \varepsilon_{SN} f_{SN} M_* E_{SN}$$

- $\varepsilon_{SN} < 1$ = fraction of SN energy available for feedback
- $f_{SN} \ll 1$ = number of possible SN per M_* (IMF dependent, of order $\lesssim 1\%$)
- = available stellar mass M_*
- = energy supplied by SN ($\simeq 10^{51}$ erg) E_{SN}

• ejection, heating, and enrichment

• eject mass from galaxy centre, i.e. giving it kinetic energy beyond escape velocity:

$$E_{kin,ej} = \frac{1}{2} M_{ej} v_{esc}^2$$

• where the escape velocity is approx.

$$v_{esc}^2 = \frac{2GM_{vir}}{R_{vir}}$$

• available energy from SN

$$E_{fb} = \varepsilon_{SN} f_{SN} M_* E_{SN}$$

- $\mathcal{E}_{SN} < 1$ = fraction of SN energy available for feedback
- $f_{SN} \ll 1$ = number of possible SN per M_* (IMF dependent, of order $\lesssim 1\%$)
- M_* = available stellar mass
- E_{SN} = energy supplied by SN ($\simeq 10^{51}$ erg)

!? (assumed for both Type II and Ia)

 $\succ \quad E_{kin,ej} = M_{ej} \frac{GM_{vir}}{R_{vir}} = M_{ej} V_{vir}^2$

• ejection, heating, and enrichment

• eject mass from galaxy centre, i.e. giving it kinetic energy beyond escape velocity:

$$E_{kin,ej} = \frac{1}{2} M_{ej} v_{esc}^{2}$$
• where the escape velocity is approx.

$$v_{esc}^{2} = \frac{2GM_{vir}}{R_{vir}}$$
• available energy from SN

$$E_{fb} = \varepsilon_{SN} f_{SN} M_{*} E_{SN}$$

$$E_{kin,ej} = M_{ej} \frac{GM_{vir}}{R_{vir}} = M_{ej} V_{vir}^{2}$$
• available energy from SN

$$E_{fb} = \varepsilon_{SN} f_{SN} M_{*} E_{SN}$$

$$E_{kin,ej} = E_{fb}$$

$$E_{kin,ej} = E_{fb}$$

$$E_{SN} < 1 = \text{fraction of SN energy available for feedback}$$

$$f_{SN} < 1 = \text{number of possible SN per } M_{*} (\text{IMF dependent, of order $\leq 1\%)}$$

$$M_{*} = \text{available stellar mass}$$

$$E_{SN} = \text{energy supplied by SN ($=10^{51}\text{erg})}^{-2}$$
• ejected mass M_{ej} :

• ejection, heating, and enrichment

• eject mass from galaxy centre, i.e. giving it kinetic energy beyond escape velocity:

$$E_{kin,ej} = \frac{1}{2} M_{ej} v_{esc}^{2}$$
where the escape velocity is approx.

$$v_{esc}^{2} = \frac{2GM_{vir}}{R_{vir}}$$

$$E_{kin,ej} = M_{ej} \frac{GM_{vir}}{R_{vir}} = M_{ej} V_{vir}^{2}$$
available energy from SN

$$E_{fb} = \varepsilon_{SN} f_{SN} M_{*} E_{SN}$$

$$E_{kin,ej} = E_{fb}$$

$$\varepsilon_{SN} < 1 = \text{fraction of SN energy available for feedback}$$

$$f_{SN} < 1 = \text{number of possible SN per } M_{*} (\text{IMF dependent, of order } \leq 1\%)$$

$$M_{*} = \text{available stellar mass}$$

$$E_{SN} = \text{energy supplied by SN} (\simeq 10^{51} \text{erg})$$
ejected mass M_{ej} :

$$\frac{M_{ej}}{M_{*}} \approx 0.4 \varepsilon_{SN} \left(\frac{V_{vir}}{200 \text{km/s}}\right)^{-2}$$
In MW, 100% SN efficiency can eject 40% of the baryonic mass

• ejection, **heating?**, and enrichment

- ejection, **heating**, and enrichment
 - the virial temperature of a dark matter halo!?

• ejection, **heating**, and enrichment

• the virial temperature of a dark matter halo

 $E_{kin,g}^{*}$

*thermal motion of gas <=> kinetic energy of gas

• ejection, **heating**, and enrichment

• the virial temperature of a dark matter halo

$$E_{kin,g} = \frac{3}{2}N_g kT = \frac{3}{2}\frac{M_g}{\mu m_p}kT$$

• ejection, **heating**, and enrichment

• the virial temperature of a dark matter halo

$$E_{kin,g} = \frac{3}{2}N_g kT = \frac{3}{2}\frac{M_g}{\mu m_p}kT$$

 $E_{pot,g}$

• ejection, **heating**, and enrichment

• the virial temperature of a dark matter halo

$$E_{kin,g} = \frac{3}{2}N_g kT = \frac{3}{2}\frac{M_g}{\mu m_p}kT$$

$$E_{pot,g} = -\frac{3}{5} \frac{GM_{vir}M_g}{R_{vir}}$$

- ejection, **heating**, and enrichment
 - the virial temperature of a **dark matter halo**

$$E_{kin,g} = \frac{3}{2}N_g kT = \frac{3}{2}\frac{M_g}{\mu m_p} kT$$
 the gas lives in the potential of **all** material!

$$E_{pot,g} = -\frac{3}{5}\frac{4M_{vir}M_g}{R_{vir}}$$

R

• ejection, heating, and enrichment

• the virial temperature of a dark matter halo

• ejection, heating, and enrichment

• the virial temperature of a dark matter halo

• ejection, **heating**, and enrichment

• the virial temperature of a dark matter halo $T_{vir} = \frac{1}{5} \frac{\mu m_p}{k} V_{vir}^2$

• ejection, **heating**, and enrichment

• the virial temperature of a dark matter halo $T_{vir} = \frac{1}{5} \frac{\mu m_p}{k} V_{vir}^2$

• reheat cold gas to T_{vir}

• ejection, **heating**, and enrichment

• the virial temperature of a dark matter halo $T_{vir} = \frac{1}{5} \frac{\mu m_p}{k} V_{vir}^2$

• reheat cold gas to T_{vir}

$$E_{reheat,g} = \frac{3}{2} \frac{M_g}{\mu m_p} k \left(T_{vir} - T_{g,cold} \right)$$

• ejection, **heating**, and enrichment

• the virial temperature of a dark matter halo $T_{vir} = \frac{1}{5} \frac{\mu m_p}{k} V_{vir}^2$

• reheat cold gas to T_{vir}

$$E_{reheat,g} = \frac{3}{2} \frac{M_g}{\mu m_p} k \left(T_{vir} - T_{g,cold} \right) \stackrel{\downarrow}{=} \frac{3}{10} M_g V_{vir}^2 \left(1 - \frac{T_{g,cold}}{T_{vir}} \right)$$

• ejection, **heating**, and enrichment

• the virial temperature of a dark matter halo $T_{vir} = \frac{1}{5} \frac{\mu m_p}{k} V_{vir}^2$

• reheat cold gas to
$$T_{vir}$$

$$E_{reheat,g} = \frac{3}{2} \frac{M_g}{\mu m_p} k \left(T_{vir} - T_{g,cold} \right) \stackrel{\downarrow}{=} \frac{3}{10} M_g V_{vir}^2 \left(1 - \frac{T_{g,cold}}{T_{vir}} \right)$$

available supernova energy
$$E_{fb} = \left[\epsilon_{SN} f_{SN} M_* E_{SN} \right]^{-2} \left(1 - \frac{T_{g,cold}}{T_{vir}} \right)^{-1}$$

1

• ejection, heating, and enrichment

• the virial temperature of a dark matter halo $T_{vir} = \frac{1}{5} \frac{\mu m_p}{k} V_{vir}^2$

• reheat cold gas to
$$T_{vir}$$

$$E_{reheat,g} = \frac{3}{2} \frac{M_g}{\mu m_p} k \left(T_{vir} - T_{g,cold} \right) \stackrel{\checkmark}{=} \frac{3}{10} M_g V_{vir}^2 \left(1 - \frac{T_{g,cold}}{T_{vir}} \right)$$

available supernova energy
$$E_{fb} = \left[\varepsilon_{SN} f_{SN} M_* E_{SN} \right]^{-2} \left(1 - \frac{T_{g,cold}}{T_{vir}} \right)^{-1}$$

1

In MW, every I solar mass formed can reheat 17M.

• ejection, heating, and **enrichment?**

• ejection, heating, and **enrichment**

• ejection, heating, and **enrichment**

• ejection, heating, and **enrichment**

supernova feedback

- stellar evolution
- relevance for galaxy formation and **cosmology**

internal baryonic processes

supernova feedback – relevance for cosmology

supernova feedback – relevance for cosmology

supernova feedback – relevance for cosmology

biased galaxy formation

internal baryonic processes:

- supernova feedback
- active galactic nuclei feedback
- dwarf galaxies

internal baryonic processes

active galactic nuclei

- first observed late 1950s as radio sources
- first visible counterpart found by Maarten Schmidt* in 1963

*died on 17/09/2022

- first observed late 1950s as radio sources
- first visible counterpart found by Maarten Schmidt in 1963

- first observed late 1950s as radio sources
- first visible counterpart found by Maarten Schmidt in 1963

- first observed late 1950s as radio sources
- first visible counterpart found by Maarten Schmidt in 1963

- first observed late 1950s as radio sources
- first visible counterpart found by Maarten Schmidt in 1963

- first observed late 1950s as radio sources
- first visible counterpart found by Maarten Schmidt
- spectrum revealed strange emission lines
- interpreted by Schmidt as redshifted hydrogen lines

- first observed late 1950s as radio sources
- first visible counterpart found by Maarten Schmidt
- spectrum revealed strange emission lines
- interpreted by Schmidt as redshifted hydrogen lines
- gradually drawing relation to Seyfert galaxies, i.e.
 - optically identified galaxies w/ extremely high central luminosities

internal baryonic processes

- first observed late 1950s as radio sources
- first visible counterpart found by Maarten Schmidt
- spectrum revealed strange emission lines
- interpreted by Schmidt as redshifted hydrogen lines
- gradually drawing relation to Seyfert galaxies, i.e.
 - optically identified galaxies w/ extremely high central luminosities

- first observed late 1950s as radio sources
- first visible counterpart found by Maarten Schmidt
- spectrum revealed strange emission lines
- interpreted by Schmidt as redshifted hydrogen lines
- gradually drawing relation to Seyfert galaxies, i.e.
 - optically identified galaxies w/ extremely high central luminosities
- distance and observed flux => unknowingly high energy production

- first observed late 1950s as radio sources
- first visible counterpart found by Maarten Schmidt
- spectrum revealed strange emission lines
- interpreted by Schmidt as redshifted hydrogen lines
- gradually drawing relation to Seyfert galaxies, i.e.
 - optically identified galaxies w/ extremely high central luminosities
- distance and **observed** flux => unknowingly high energy production

what else do we observe?

active galactic nuclei – observed properties

- strong, point-like nucleus
- highly luminous (outshining host galaxy)
- SED very different to stars or galaxies
- signatures of highly excitated elements (e.g. O[VI], C[IV], ...)
- broad emission lines suggesting high internal velocities
- high variability (in X-rays)

Galaxy Formation

circular logic: AGN is already the explanation for all this...

Active Galactic Nuclei – observed properties

- strong, point-like nucleus
- highly luminous (outshining host galaxy)
- SED very different to stars or galaxies
- signatures of highly excitated elements (e.g. O[VI], C[IV], ...)
- broad emission lines suggesting high internal velocities
- high variability (in X-rays)

Galaxy Formation

circular logic: AGN is already the explanation for all this...

Active Galactic Nuclei – observed properties

- strong, point-like nucleus
- highly luminous (outshining host galaxy)
- SED very different to stars or galaxies
- signatures of highly excitated elements (e.g. O[VI], C[IV], ...)
- broad emission lines suggesting high internal velocities
- high variability (in X-rays)

different types of objects with similar properties \rightarrow
- Seyfert galaxy: emits energy of order host galaxy luminosity
- quasar: emits energy of order >100 x host galaxy luminosity

- Seyfert galaxy: emits energy of order host galaxy luminosity
- quasar: emits energy of order >100 x host galaxy luminosity
- radio-quiet: weak radio ejecta that are energetically insignificant
- radio-loud: significant fraction of energy in radio jets and lobes

- Seyfert galaxy: emits energy of order host galaxy luminosity
- quasar: emits energy of order >100 x host galaxy luminosity
- radio-quiet: weak radio ejecta that are energetically insignificant
- radio-loud: significant fraction of energy in radio jets and lobes
- blazar: highly variable, many powerful (gamma-ray) bursts

- Seyfert galaxy: emits energy of order host galaxy luminosity
- quasar: emits energy of order >100 x host galaxy luminosity
- radio-quiet: weak radio eiget these differences!?
 radio-loud: how to explain all these differences and lobes
- blazar: highly variable, many powerful (gamma-ray) bursts

Active Galactic Nuclei – types

- Seyfert galaxy: emits energy of order host galaxy luminosity
- quasar: emits energy of order >100 x host galaxy luminosity

• blazar: highly variable, many powerful (gamma-ray) bursts

Galaxy Formation

internal baryonic processes

active galactic nuclei – types

all the same,

just seen from different angles...

internal baryonic processes

active galactic nuclei – model(s)

- accretion of mass onto black hole $(M_{bh} \sim 10^6 10^{10} M_{\odot})$
- gravitational collapse releases energy

(cf. Croton et al. 2016)

(cf. Croton et al. 2016)

<u>active galactic nuclei – model(s)</u>

- accretion of mass onto black hole $(M_{bh} \sim 10^6 10^{10} M_{\odot})$
- gravitational collapse releases energy

active galactic nuclei – model(s)

- accretion of mass onto black hole $(M_{bh} \sim 10^{6} 10^{10} M_{\odot})$
- gravitational collapse releases energy

$$\Delta E_{kin} = -\frac{1}{2} \Delta E_{pot}$$
 (exercise)

- accretion of mass onto black hole $(M_{bh} \sim 10^{6} 10^{10} M_{\odot})$
- gravitational collapse releases energy

$$\Delta E_{kin} = -\frac{1}{2} \Delta E_{pot} \quad (\text{exercise})$$

only half of the gained potential energy is converted into kinetic energy!

the remaining half is released...

• the energy output from the AGN impacts its environment

- the energy output from the AGN impacts its environment via
 - radiation
 - particle winds
 - plasma jets

- the energy output from the AGN impacts its environment via
 - radiation
 - particle winds
 - plasma jets

(image credit: Ajay Limaye)

- the energy output from the AGN impacts its environment via
 - radiation
 - particle winds
 - plasma jets
 - \rightarrow prevents gas cooling, and/or
 - \rightarrow expells gas...

credit:Ajay Limaye)

- the energy output from the AGN impacts its environment via
 - radiation
 - particle winds
 - plasma jets
 - \rightarrow prevents gas cooling, and/or
 - \rightarrow expells gas...

...on galactic scales!*

*and even on galaxy clusters scales (cf. Galaxy Cluster lecture)

active galactic nuclei – problem

how to form these super-massive black holes in the first place?

biased galaxy formation

Internal baryonic processes:

- ✓ supernova feedback
- ✓ active galactic nuclei feedback
- dwarf galaxies

...but cusps do not comply with the dynamics of galaxies

influence of (internal) baryonic processes

stellar feedback also affects the distribution of dark matter in the centres of galaxies...

biased galaxy formation

Internal baryonic processes:

- ✓ supernova feedback
- ✓ active galactic nuclei feedback
- dwarf galaxies

profound influence on galaxy formation and evolution *and* internal galaxy properties

Created by Zsolt Frei and James E. Gunn Copyright © 1999 Princeton University Press

- biased galaxy formation
- internal baryonic processes:
 - supernova feedback
 - active galactic nuclei feedback
- dwarf galaxies

- biased galaxy formation
- internal baryonic processes:
 - supernova feedback
 - active galactic nuclei feedback
- dwarf galaxies:
 - internal vs. external effects...

dwarf galaxies

the missing satellite problem

the missing satellite problem – possible solutions?

the missing satellite problem – possible solutions

• not (yet) discovered (e.g. observational problem)

the missing satellite problem – possible solutions

- not (yet) discovered (e.g. observational problem)
- missing physics: (e.g. modeler problem)
 - internal baryonic feedback
 - external UV background

-...

the missing satellite problem – possible solutions

- not (yet) discovered (e.g. observational problem)
- missing physics: (e.g. modeler problem)
 - *internal* baryonic feedback
 - external UV background

-...

the missing satellite problem – possible solutions

- not (yet) discovered (e.g. observational problem)
- missing physics: (e.g. modeler problem)
 - internal baryonic feedback
 - external UV background

-...

• tinkering with fundamental physics (gravity, WDM, cDE, VDE, ...)

the missing satellite problem – possible solutions

- not (yet) discovered (e.g. observational problem)
- missing physics: (e.g. modeler problem)
 - internal baryonic feedback
 - external UV background

-...

• tinkering with fundamental physics (gravity, WDM, cDE, VDE, ...)

the missing satellite problem – possible solutions

- not (yet) discovered (e.g. observational problem)
- missing physics: (e.g. modeler problem)
 - **internal** baryonic feedback
 - external UV background

-...

• tinkering with fundamental physics (gravity, WDM, cDE, VDE, ...)

the missing satellite problem – possible solutions

• internal baryonic feedback

image credit: NASA, ESA, and A. Feild (STScl)

dwarf galaxies

the missing satellite problem – possible solutions

• internal baryonic feedback

the majority of dwarf galaxies (as modelled in cosmological simulations) show outflows of material...

the missing satellite problem – possible solutions

- not (yet) discovered (e.g. observational problem)
- missing physics: (e.g. modeler problem)
 - internal baryonic feedback
 - external UV background
 - -...
- tinkering with fundamental physics (gravity, WDM, cDE, VDE, ...)

dwarf galaxies

the missing satellite problem – possible solutions

• external UV background

dwarf galaxies

the missing satellite problem – possible solutions

• external UV background

Galaxy Formation dwarf galaxies the missing satellite problem – possible solutions • external UV background dwarf galaxy (w/ dark matter halo) external photons gas has been heated

the missing satellite problem – possible solutions

• external UV background - *calculation*?

the missing satellite problem – possible solutions

- external UV background
- halos with $T_{vir} \leq T_{background}$ are unable to accrete gas

the missing satellite problem – possible solutions

- external UV background
- halos with $T_{vir} \leq T_{background}$ are unable to accrete gas

Galaxy Formation	dwarf galaxies	
the missing satellite problem – possible solutions		
• external UV background – simulation of influence		
WITH RADIATION FROM GALAXIES AND QUASARS	WITHOUT RADIATION	

Galaxy	Formation
--------	-----------

the missing satellite problem – possible solutions

• external UV background – simulation of influence

 $\log (M/M sun)$

- internal baryonic processes:
 - supernova feedback
 - active galactic nuclei feedback

- dwarf galaxies:
 - internal & external effects

- internal baryonic processes:
 - supernova feedback
 - active galactic nuclei feedback

- dwarf galaxies:
 - internal & external effects

10

 $\log (M/M sun)$

8

12

14
Galaxy Formation

Alexander Knebe (Universidad Autonoma de Madrid)

"It's somewhere between a nova and a supernova -- probably a pretty good nova."