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𝑑𝑒"#$
𝑑𝑡 = 𝚥 2 𝐸 𝑒"#$= energy density
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𝜇: magnetic permeability
they describe the behaviour of both electric and magnetic fields

and
their interaction with matter

equations are given in Gaussian units

a current and/or time varying E-field induces a B-field
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§Maxwell equations

∇ 2 𝐷 = 4𝜋𝜌

∇×𝐸 = −
1
𝑐
𝜕𝐵
𝜕𝑡

∇ 2 𝐵 = 0

∇×𝐻 =
4𝜋
𝑐 𝚥 +

1
𝑐
𝜕𝐷
𝜕𝑡

𝐷 = 𝜖𝐸
𝐻 = "

#
𝐵

𝚥 = 𝜌�⃗�

∇ 0
0 = 𝚥 +

𝜕�⃗�
𝜕𝑡

charge conservation:

𝜕�⃗�
𝜕𝑡 + 𝜌�⃗� = 0

𝚥 = 𝜌�⃗�

§ Poynting theorem:

𝜖 = 𝑐𝑜𝑛𝑠𝑡. , 𝜇 = 𝑐𝑜𝑛𝑠𝑡.

= −
1
8𝜋

𝜕
𝜕𝑡 𝜖𝐸! +

1
𝜇 𝐵

! −
𝑐
4𝜋 ∇ 2 𝐸×𝐻

𝑑𝑒"#$
𝑑𝑡 =

1
4𝜋 −𝐻 2

𝜕𝐵
𝜕𝑡 − 𝑐∇ 2 𝐸×𝐻 − 𝐸 2

𝜕𝐷
𝜕𝑡
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§Maxwell equations

∇ 2 𝐷 = 4𝜋𝜌

∇×𝐸 = −
1
𝑐
𝜕𝐵
𝜕𝑡

∇ 2 𝐵 = 0

∇×𝐻 =
4𝜋
𝑐 𝚥 +

1
𝑐
𝜕𝐷
𝜕𝑡

𝐷 = 𝜖𝐸
𝐻 = "

#
𝐵

𝚥 = 𝜌�⃗�

∇ 0
0 = 𝚥 +

𝜕�⃗�
𝜕𝑡

charge conservation:

𝜕�⃗�
𝜕𝑡 + 𝜌�⃗� = 0

𝚥 = 𝜌�⃗�

§ Poynting theorem:

𝑑𝑒"#$
𝑑𝑡 = −

1
8𝜋

𝜕
𝜕𝑡 𝜖𝐸! +

1
𝜇 𝐵

! − ∇ 2
𝑐
4𝜋 𝐸×𝐻
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§Maxwell equations

∇ 2 𝐷 = 4𝜋𝜌

∇×𝐸 = −
1
𝑐
𝜕𝐵
𝜕𝑡

∇ 2 𝐵 = 0

∇×𝐻 =
4𝜋
𝑐 𝚥 +

1
𝑐
𝜕𝐷
𝜕𝑡

𝐷 = 𝜖𝐸
𝐻 = "

#
𝐵

𝚥 = 𝜌�⃗�

∇ 0
0 = 𝚥 +

𝜕�⃗�
𝜕𝑡

charge conservation:

𝜕�⃗�
𝜕𝑡 + 𝜌�⃗� = 0

𝚥 = 𝜌�⃗�

§ Poynting theorem:

𝑆 =
𝑐
4𝜋 𝐸×𝐻Poynting vector: directional energy flux

𝑑𝑒"#$
𝑑𝑡 = −

1
8𝜋

𝜕
𝜕𝑡 𝜖𝐸! +

1
𝜇 𝐵

! − ∇ 2
𝑐
4𝜋 𝐸×𝐻
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§Maxwell equations

∇ 2 𝐷 = 4𝜋𝜌

∇×𝐸 = −
1
𝑐
𝜕𝐵
𝜕𝑡

∇ 2 𝐵 = 0

∇×𝐻 =
4𝜋
𝑐 𝚥 +

1
𝑐
𝜕𝐷
𝜕𝑡

𝐷 = 𝜖𝐸
𝐻 = "

#
𝐵

𝚥 = 𝜌�⃗�

∇ 0
0 = 𝚥 +

𝜕�⃗�
𝜕𝑡

charge conservation:

𝜕�⃗�
𝜕𝑡 + 𝜌�⃗� = 0

𝚥 = 𝜌�⃗�

§ Poynting theorem:

𝑆 =
𝑐
4𝜋 𝐸×𝐻

𝑑𝑒"#$
𝑑𝑡 = −

1
8𝜋

𝜕
𝜕𝑡 𝜖𝐸! +

1
𝜇 𝐵

! − ∇ 2 𝑆
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§Maxwell equations

∇ 2 𝐷 = 4𝜋𝜌

∇×𝐸 = −
1
𝑐
𝜕𝐵
𝜕𝑡

∇ 2 𝐵 = 0

∇×𝐻 =
4𝜋
𝑐 𝚥 +

1
𝑐
𝜕𝐷
𝜕𝑡

𝐷 = 𝜖𝐸
𝐻 = "

#
𝐵

𝚥 = 𝜌�⃗�

∇ 0
0 = 𝚥 +

𝜕�⃗�
𝜕𝑡

charge conservation:

𝜕�⃗�
𝜕𝑡 + 𝜌�⃗� = 0

𝚥 = 𝜌�⃗�

§ Poynting theorem:

𝑆 =
𝑐
4𝜋 𝐸×𝐻

flux is orthogonal to both 𝐸 and 𝐵!

𝑑𝑒"#$
𝑑𝑡 = −

1
8𝜋

𝜕
𝜕𝑡 𝜖𝐸! +

1
𝜇 𝐵

! − ∇ 2 𝑆
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§Maxwell equations

∇ 2 𝐷 = 4𝜋𝜌

∇×𝐸 = −
1
𝑐
𝜕𝐵
𝜕𝑡

∇ 2 𝐵 = 0

∇×𝐻 =
4𝜋
𝑐 𝚥 +

1
𝑐
𝜕𝐷
𝜕𝑡

𝐷 = 𝜖𝐸
𝐻 = "

#
𝐵

𝚥 = 𝜌�⃗�

∇ 0
0 = 𝚥 +

𝜕�⃗�
𝜕𝑡

charge conservation:

𝜕�⃗�
𝜕𝑡 + 𝜌�⃗� = 0

𝚥 = 𝜌�⃗�

§ Poynting theorem:

𝑆 =
𝑐
4𝜋 𝐸×𝐻

flux is orthogonal to both 𝐸 and 𝐵!

Dipole radiation of a dipole vertically in the page,
showing electric field strength (color) and Poynting vector (arrows) in the plane of the page.

𝑑𝑒"#$
𝑑𝑡 = −

1
8𝜋

𝜕
𝜕𝑡 𝜖𝐸! +

1
𝜇 𝐵

! − ∇ 2 𝑆
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§Maxwell equations

∇ 2 𝐷 = 4𝜋𝜌

∇×𝐸 = −
1
𝑐
𝜕𝐵
𝜕𝑡

∇ 2 𝐵 = 0

∇×𝐻 =
4𝜋
𝑐 𝚥 +

1
𝑐
𝜕𝐷
𝜕𝑡

𝐷 = 𝜖𝐸
𝐻 = "

#
𝐵

𝚥 = 𝜌�⃗�

∇ 0
0 = 𝚥 +

𝜕�⃗�
𝜕𝑡

charge conservation:

𝜕�⃗�
𝜕𝑡 + 𝜌�⃗� = 0

𝚥 = 𝜌�⃗�

§ Poynting theorem:

𝑆 =
𝑐
4𝜋 𝐸×𝐻

integral form!?

𝑑𝑒"#$
𝑑𝑡 = −

1
8𝜋

𝜕
𝜕𝑡 𝜖𝐸! +

1
𝜇 𝐵

! − ∇ 2 𝑆
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§Maxwell equations

∇ 2 𝐷 = 4𝜋𝜌

∇×𝐸 = −
1
𝑐
𝜕𝐵
𝜕𝑡

∇ 2 𝐵 = 0

∇×𝐻 =
4𝜋
𝑐 𝚥 +

1
𝑐
𝜕𝐷
𝜕𝑡

𝐷 = 𝜖𝐸
𝐻 = "

#
𝐵

𝚥 = 𝜌�⃗�

∇ 0
0 = 𝚥 +

𝜕�⃗�
𝜕𝑡

charge conservation:

𝜕�⃗�
𝜕𝑡 + 𝜌�⃗� = 0

𝚥 = 𝜌�⃗�

§ Poynting theorem:

𝑆 =
𝑐
4𝜋 𝐸×𝐻

integral form

B
=

𝑑𝑒"#$
𝑑𝑡 𝑑𝑉 = −

𝑑
𝑑𝑡B=

1
8𝜋 𝜖𝐸! +

1
𝜇 𝐵

! 𝑑𝑉 −B
>
𝑆 2 𝑑𝐴
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§Maxwell equations

∇ 2 𝐷 = 4𝜋𝜌

∇×𝐸 = −
1
𝑐
𝜕𝐵
𝜕𝑡

∇ 2 𝐵 = 0

∇×𝐻 =
4𝜋
𝑐 𝚥 +

1
𝑐
𝜕𝐷
𝜕𝑡

𝐷 = 𝜖𝐸
𝐻 = "

#
𝐵

𝚥 = 𝜌�⃗�

∇ 0
0 = 𝚥 +

𝜕�⃗�
𝜕𝑡

charge conservation:

𝜕�⃗�
𝜕𝑡 + 𝜌�⃗� = 0

𝚥 = 𝜌�⃗�

§ Poynting theorem:

rate of change of mechanical energy rate of change of E- and B-field energy

𝑆 =
𝑐
4𝜋 𝐸×𝐻

integral form

B
=

𝑑𝑒"#$
𝑑𝑡 𝑑𝑉 = −

𝑑
𝑑𝑡B=

1
8𝜋 𝜖𝐸! +

1
𝜇 𝐵

! 𝑑𝑉 −B
>
𝑆 2 𝑑𝐴
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§Maxwell equations

∇ 2 𝐷 = 4𝜋𝜌

∇×𝐸 = −
1
𝑐
𝜕𝐵
𝜕𝑡

∇ 2 𝐵 = 0

∇×𝐻 =
4𝜋
𝑐 𝚥 +

1
𝑐
𝜕𝐷
𝜕𝑡

𝐷 = 𝜖𝐸
𝐻 = "

#
𝐵

𝚥 = 𝜌�⃗�

∇ 0
0 = 𝚥 +

𝜕�⃗�
𝜕𝑡

charge conservation:

𝜕�⃗�
𝜕𝑡 + 𝜌�⃗� = 0

𝚥 = 𝜌�⃗�

§ Poynting theorem:

𝑑
𝑑𝑡 𝑈?@AB + 𝑈C#@DE = −B

>
𝑆 2 𝑑𝐴 𝑆 =

𝑐
4𝜋 𝐸×𝐻

integral form
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§Maxwell equations

∇ 2 𝐷 = 4𝜋𝜌

∇×𝐸 = −
1
𝑐
𝜕𝐵
𝜕𝑡

∇ 2 𝐵 = 0

∇×𝐻 =
4𝜋
𝑐 𝚥 +

1
𝑐
𝜕𝐷
𝜕𝑡

𝐷 = 𝜖𝐸
𝐻 = "

#
𝐵

𝚥 = 𝜌�⃗�

∇ 0
0 = 𝚥 +

𝜕�⃗�
𝜕𝑡

charge conservation:

𝜕�⃗�
𝜕𝑡 + 𝜌�⃗� = 0

𝚥 = 𝜌�⃗�

§ Poynting theorem:

𝑑
𝑑𝑡 𝑈?@AB + 𝑈C#@DE = −B

>
𝑆 2 𝑑𝐴

the rate of change of total energy within a volume
is equal to the net inward flow of energy through the bounding surface

𝑆 =
𝑐
4𝜋 𝐸×𝐻

integral form
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§Radiation?

§ Poynting theorem:

𝑑
𝑑𝑡 𝑈?@AB + 𝑈C#@DE = −B

>
𝑆 2 𝑑𝐴 𝑆 =

𝑐
4𝜋 𝐸×𝐻

the rate of change of total energy within a volume
is equal to the net inward flow of energy through the bounding surface
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§Radiation

§ Poynting theorem:

𝑑
𝑑𝑡 𝑈?@AB + 𝑈C#@DE = −B

>
𝑆 2 𝑑𝐴 𝑆 =

𝑐
4𝜋 𝐸×𝐻

In electrostatics both 𝐸 and 𝐵 decrease like 𝑟%&

  → 𝑆 decreases like 𝑟%' and thus the integral goes to zero since the surface area increases only as 𝑟%&.

the rate of change of total energy within a volume
is equal to the net inward flow of energy through the bounding surface
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§Radiation

§ Poynting theorem:

𝑑
𝑑𝑡 𝑈?@AB + 𝑈C#@DE = −B

>
𝑆 2 𝑑𝐴 𝑆 =

𝑐
4𝜋 𝐸×𝐻

In electrostatics both 𝐸 and 𝐵 decrease like 𝑟%&

  → 𝑆 decreases like 𝑟%' and thus the integral goes to zero since the surface area increases only as 𝑟%&.

For time varying fields 𝐸 and 𝐵	decrease like 𝑟%"

  → the integral can contribute a finite amount to the rate of change of energy of the system. 

the rate of change of total energy within a volume
is equal to the net inward flow of energy through the bounding surface
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§Radiation

§ Poynting theorem:

𝑑
𝑑𝑡 𝑈?@AB + 𝑈C#@DE = −B

>
𝑆 2 𝑑𝐴 𝑆 =

𝑐
4𝜋 𝐸×𝐻

In electrostatics both 𝐸 and 𝐵 decrease like 𝑟%&

  → 𝑆 decreases like 𝑟%' and thus the integral goes to zero since the surface area increases only as 𝑟%&.

For time varying fields 𝐸 and 𝐵	decrease like 𝑟%"

  → the integral can contribute a finite amount to the rate of change of energy of the system. 

This energy flowing in (or out) at large distances is called radiation.

the rate of change of total energy within a volume
is equal to the net inward flow of energy through the bounding surface
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§ Lorentz force

§ Maxwell equations

§ Poynting vector

§ electromagnetic waves

§ radiation spectrum

§ electromagnetic potentials
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§ Electromagnetic Waves



Radiation Fields review of electrodynamics

§ Electromagnetic Waves – Maxwell equations

∇ 2 𝐷 = 4𝜋𝜌

∇×𝐸 = −
1
𝑐
𝜕𝐵
𝜕𝑡

∇ 2 𝐵 = 0

∇×𝐻 =
4𝜋
𝑐 𝚥 +

1
𝑐
𝜕𝐷
𝜕𝑡
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§ Electromagnetic Waves – Maxwell equations in vacuum

∇ 2 𝐸 = 0

∇×𝐸 = −
1
𝑐
𝜕𝐵
𝜕𝑡

∇ 2 𝐵 = 0

∇×𝐵 =
1
𝑐
𝜕𝐸
𝜕𝑡
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§ Electromagnetic Waves – Maxwell equations in vacuum

∇ 2 𝐸 = 0

∇×𝐸 = −
1
𝑐
𝜕𝐵
𝜕𝑡

∇ 2 𝐵 = 0

∇×𝐵 =
1
𝑐
𝜕𝐸
𝜕𝑡

∇×
∇× ∇×𝐸 = −

1
𝑐
𝜕∇×𝐵
𝜕𝑡
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§ Electromagnetic Waves – Maxwell equations in vacuum

∇ 2 𝐸 = 0

∇×𝐸 = −
1
𝑐
𝜕𝐵
𝜕𝑡

∇ 2 𝐵 = 0

∇×𝐵 =
1
𝑐
𝜕𝐸
𝜕𝑡

∇×
∇× ∇×𝐸 = −

1
𝑐
𝜕∇×𝐵
𝜕𝑡
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§ Electromagnetic Waves – Maxwell equations in vacuum

∇ 2 𝐸 = 0

∇×𝐸 = −
1
𝑐
𝜕𝐵
𝜕𝑡

∇ 2 𝐵 = 0

∇×𝐵 =
1
𝑐
𝜕𝐸
𝜕𝑡

∇×
∇× ∇×𝐸 = −

1
𝑐
𝜕∇×𝐵
𝜕𝑡

= −
1
𝑐
𝜕∇×𝐵
𝜕𝑡 = −

1
𝑐!
𝜕!𝐸
𝜕𝑡!
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§ Electromagnetic Waves – Maxwell equations in vacuum

∇ 2 𝐸 = 0

∇×𝐸 = −
1
𝑐
𝜕𝐵
𝜕𝑡

∇ 2 𝐵 = 0

∇×𝐵 =
1
𝑐
𝜕𝐸
𝜕𝑡

∇×
∇× ∇×𝐸 = −

1
𝑐
𝜕∇×𝐵
𝜕𝑡

= −
1
𝑐
𝜕∇×𝐵
𝜕𝑡 = −

1
𝑐!
𝜕!𝐸
𝜕𝑡!

∇× ∇×𝐸 = ∇ ∇ 2 𝐸 − ∇!𝐸
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§ Electromagnetic Waves – Maxwell equations in vacuum

∇ 2 𝐸 = 0

∇×𝐸 = −
1
𝑐
𝜕𝐵
𝜕𝑡

∇ 2 𝐵 = 0

∇×𝐵 =
1
𝑐
𝜕𝐸
𝜕𝑡

∇×
∇× ∇×𝐸 = −

1
𝑐
𝜕∇×𝐵
𝜕𝑡

= −
1
𝑐
𝜕∇×𝐵
𝜕𝑡 = −

1
𝑐!
𝜕!𝐸
𝜕𝑡!

∇× ∇×𝐸 = ∇ ∇ 2 𝐸 − ∇!𝐸

∇%𝐴 =
∇%𝐴&
∇%𝐴'
∇%𝐴(

reminder:

(it is a vectorial Laplace operator...)
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§ Electromagnetic Waves – Maxwell equations in vacuum

∇ 2 𝐸 = 0

∇×𝐸 = −
1
𝑐
𝜕𝐵
𝜕𝑡

∇ 2 𝐵 = 0

∇×𝐵 =
1
𝑐
𝜕𝐸
𝜕𝑡

∇×
∇× ∇×𝐸 = −

1
𝑐
𝜕∇×𝐵
𝜕𝑡

= −
1
𝑐
𝜕∇×𝐵
𝜕𝑡 = −

1
𝑐!
𝜕!𝐸
𝜕𝑡!

∇× ∇×𝐸 = ∇ ∇ 2 𝐸 − ∇!𝐸

= 0
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§ Electromagnetic Waves – Maxwell equations in vacuum

∇ 2 𝐸 = 0

∇×𝐸 = −
1
𝑐
𝜕𝐵
𝜕𝑡

∇ 2 𝐵 = 0

∇×𝐵 =
1
𝑐
𝜕𝐸
𝜕𝑡

∇×
∇× ∇×𝐸 = −

1
𝑐
𝜕∇×𝐵
𝜕𝑡

= −
1
𝑐
𝜕∇×𝐵
𝜕𝑡 = −

1
𝑐!
𝜕!𝐸
𝜕𝑡!

∇× ∇×𝐸 = −∇!𝐸
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§ Electromagnetic Waves – Maxwell equations in vacuum

∇ 2 𝐸 = 0

∇×𝐸 = −
1
𝑐
𝜕𝐵
𝜕𝑡

∇ 2 𝐵 = 0

∇×𝐵 =
1
𝑐
𝜕𝐸
𝜕𝑡

∇×
∇× ∇×𝐸 = −

1
𝑐
𝜕∇×𝐵
𝜕𝑡

= −
1
𝑐
𝜕∇×𝐵
𝜕𝑡 = −

1
𝑐!
𝜕!𝐸
𝜕𝑡!

∇× ∇×𝐸 = −∇!𝐸
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§ Electromagnetic Waves – Maxwell equations in vacuum

∇ 2 𝐸 = 0

∇×𝐸 = −
1
𝑐
𝜕𝐵
𝜕𝑡

∇ 2 𝐵 = 0

∇×𝐵 =
1
𝑐
𝜕𝐸
𝜕𝑡

∇!𝐸 −
1
𝑐!
𝜕!𝐸
𝜕𝑡!

= 0
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§ Electromagnetic Waves – Maxwell equations in vacuum

∇ 2 𝐸 = 0

∇×𝐸 = −
1
𝑐
𝜕𝐵
𝜕𝑡

∇ 2 𝐵 = 0

∇×𝐵 =
1
𝑐
𝜕𝐸
𝜕𝑡

∇!𝐸 −
1
𝑐!
𝜕!𝐸
𝜕𝑡!

= 0

analogy for 𝐵...
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§ Electromagnetic Waves – Maxwell equations in vacuum

∇ 2 𝐸 = 0

∇×𝐸 = −
1
𝑐
𝜕𝐵
𝜕𝑡

∇ 2 𝐵 = 0

∇×𝐵 =
1
𝑐
𝜕𝐸
𝜕𝑡

∇!𝐸 −
1
𝑐!
𝜕!𝐸
𝜕𝑡!

= 0

∇!𝐵 −
1
𝑐!
𝜕!𝐵
𝜕𝑡! = 0
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§ Electromagnetic Waves – Maxwell equations in vacuum

∇ 2 𝐸 = 0

∇×𝐸 = −
1
𝑐
𝜕𝐵
𝜕𝑡

∇ 2 𝐵 = 0

∇×𝐵 =
1
𝑐
𝜕𝐸
𝜕𝑡

∇!𝐸 −
1
𝑐!
𝜕!𝐸
𝜕𝑡!

= 0

∇!𝐵 −
1
𝑐!
𝜕!𝐵
𝜕𝑡! = 0

well known wave-equations for 𝐸(𝑟, 𝑡) and 𝐵(𝑟, 𝑡)
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∇!𝐸 −
1
𝑐!
𝜕!𝐸
𝜕𝑡!

= 0

∇!𝐵 −
1
𝑐!
𝜕!𝐵
𝜕𝑡! = 0

𝐸 𝑟, 𝑡 = �⃗�J𝐸K𝑒# "0L⃗MNO

𝐵 𝑟, 𝑡 = �⃗�!𝐵K𝑒# "0L⃗MNO

§ Electromagnetic Waves – propagation in vacuum

Ansatz:
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�⃗�!: unit vector, direction to be determined
𝐸": complex constant, value to be determined

�⃗�#: unit vector, direction to be determined
𝐵: complex constant, value to be determined

𝑘 = 𝑘𝑛, 	 𝑛: unit vector in direction of wave propagation

𝐸 𝑟, 𝑡 = �⃗�J𝐸K𝑒# "0L⃗MNO

𝐵 𝑟, 𝑡 = �⃗�!𝐵K𝑒# "0L⃗MNO

?

§ Electromagnetic Waves – propagation in vacuum

Ansatz:
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�⃗�!: unit vector, direction to be determined
𝐸": complex constant, value to be determined

�⃗�#: unit vector, direction to be determined
𝐵: complex constant, value to be determined

𝑘 = 𝑘𝑛, 	 𝑛: unit vector in direction of wave propagation

𝐸 𝑟, 𝑡 = �⃗�J𝐸K𝑒# "0L⃗MNO

𝐵 𝑟, 𝑡 = �⃗�!𝐵K𝑒# "0L⃗MNO

?

§ Electromagnetic Waves – propagation in vacuum

Ansatz:

?
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�⃗�!: unit vector, direction to be determined
𝐸": complex constant, value to be determined

�⃗�#: unit vector, direction to be determined
𝐵: complex constant, value to be determined

𝑘 = 𝑘𝑛, 	 𝑛: unit vector in direction of wave propagation

𝐸 𝑟, 𝑡 = �⃗�J𝐸K𝑒# "0L⃗MNO

𝐵 𝑟, 𝑡 = �⃗�!𝐵K𝑒# "0L⃗MNO

?

§ Electromagnetic Waves – propagation in vacuum

Ansatz:

?
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�⃗�!: unit vector, direction to be determined
𝐸": complex constant, value to be determined

�⃗�#: unit vector, direction to be determined
𝐵: complex constant, value to be determined

𝑘 = 𝑘𝑛, 	 𝑛: unit vector in direction of wave propagation

𝐸 𝑟, 𝑡 = �⃗�J𝐸K𝑒# "0L⃗MNO

𝐵 𝑟, 𝑡 = �⃗�!𝐵K𝑒# "0L⃗MNO

?

insert into Maxwell equations →

§ Electromagnetic Waves – propagation in vacuum

Ansatz:

?
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∇ 2 𝐸 = 0

∇×𝐸 = −
1
𝑐
𝜕𝐵
𝜕𝑡

∇ 2 𝐵 = 0

∇×𝐵 =
1
𝑐
𝜕𝐸
𝜕𝑡

§ Electromagnetic Waves – propagation in vacuum
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∇ 2 𝐸 = 0

∇×𝐸 = −
1
𝑐
𝜕𝐵
𝜕𝑡

∇ 2 𝐵 = 0

∇×𝐵 =
1
𝑐
𝜕𝐸
𝜕𝑡

𝐸 𝑟, 𝑡 = �⃗�)𝐸*𝑒# "+-⃗./0

𝐵 𝑟, 𝑡 = �⃗�%𝐵*𝑒# "+-⃗./0

§ Electromagnetic Waves – propagation in vacuum
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𝑖𝑘 2 �⃗�J𝐸K = 0

𝑖𝑘×�⃗�J𝐸K =
𝑖𝜔
𝑐 �⃗�!𝐵K

𝑖𝑘 2 �⃗�!𝐵K = 0

𝑖𝑘×�⃗�!𝐵K = −
𝑖𝜔
𝑐 �⃗�J𝐸K

∇ 2 𝐸 = 0

∇×𝐸 = −
1
𝑐
𝜕𝐵
𝜕𝑡

∇ 2 𝐵 = 0

∇×𝐵 =
1
𝑐
𝜕𝐸
𝜕𝑡

𝐸 𝑟, 𝑡 = �⃗�)𝐸*𝑒# "+-⃗./0

𝐵 𝑟, 𝑡 = �⃗�%𝐵*𝑒# "+-⃗./0

§ Electromagnetic Waves – propagation in vacuum
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𝑖𝑘 2 �⃗�J𝐸K = 0

𝑖𝑘×�⃗�J𝐸K =
𝑖𝜔
𝑐 �⃗�!𝐵K

𝑖𝑘 2 �⃗�!𝐵K = 0

𝑖𝑘×�⃗�!𝐵K = −
𝑖𝜔
𝑐 �⃗�J𝐸K

both �⃗�" and �⃗�& are orthogonal to the direction of the wave propagation 𝑘

§ Electromagnetic Waves – propagation in vacuum
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𝑖𝑘 2 �⃗�J𝐸K = 0

𝑖𝑘×�⃗�J𝐸K =
𝑖𝜔
𝑐 �⃗�!𝐵K

𝑖𝑘 2 �⃗�!𝐵K = 0

𝑖𝑘×�⃗�!𝐵K = −
𝑖𝜔
𝑐 �⃗�J𝐸K

�⃗�" and �⃗�& are orthogonal to each other

both �⃗�" and �⃗�& are orthogonal to the direction of the wave propagation 𝑘

§ Electromagnetic Waves – propagation in vacuum
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𝑖𝑘 2 �⃗�J𝐸K = 0

𝑖𝑘×�⃗�J𝐸K =
𝑖𝜔
𝑐 �⃗�!𝐵K

𝑖𝑘 2 �⃗�!𝐵K = 0

𝑖𝑘×�⃗�!𝐵K = −
𝑖𝜔
𝑐 �⃗�J𝐸K

𝑘, �⃗�" and �⃗�& form a right-handed set

§ Electromagnetic Waves – propagation in vacuum
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𝑖𝑘 2 �⃗�J𝐸K = 0

𝑖𝑘×�⃗�J𝐸K =
𝑖𝜔
𝑐 �⃗�!𝐵K

𝑖𝑘 2 �⃗�!𝐵K = 0

𝑖𝑘×�⃗�!𝐵K = −
𝑖𝜔
𝑐 �⃗�J𝐸K

𝑘, �⃗�" and �⃗�& form a right-handed set: �⃗�" = 𝑘×�⃗�&
�⃗�& = −𝑘×�⃗�"

§ Electromagnetic Waves – propagation in vacuum
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𝑖𝑘 2 �⃗�J𝐸K = 0

𝑖𝑘×�⃗�J𝐸K =
𝑖𝜔
𝑐 �⃗�!𝐵K

𝑖𝑘 2 �⃗�!𝐵K = 0

𝑖𝑘×�⃗�!𝐵K = −
𝑖𝜔
𝑐 �⃗�J𝐸K

𝑘, �⃗�" and �⃗�& form a right-handed set: �⃗�" = 𝑘×�⃗�&
�⃗�& = −𝑘×�⃗�"

𝐸 𝑟, 𝑡 = �⃗�!𝐸"𝑒$ %&(⃗)*+

𝐵 𝑟, 𝑡 = �⃗�#𝐵"𝑒$ %&(⃗)*+

§ Electromagnetic Waves – propagation in vacuum
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𝑖𝑘 2 �⃗�J𝐸K = 0

𝑖𝑘×�⃗�J𝐸K =
𝑖𝜔
𝑐 �⃗�!𝐵K

𝑖𝑘 2 �⃗�!𝐵K = 0

𝑖𝑘×�⃗�!𝐵K = −
𝑖𝜔
𝑐 �⃗�J𝐸K

𝑘, �⃗�" and �⃗�& form a right-handed set: �⃗�" = 𝑘×�⃗�&
�⃗�& = −𝑘×�⃗�"

𝐸K =
𝜔
𝑘𝑐 𝐵K

𝐵K =
𝜔
𝑘𝑐
𝐸K

𝐸 𝑟, 𝑡 = �⃗�!𝐸"𝑒$ %&(⃗)*+

𝐵 𝑟, 𝑡 = �⃗�#𝐵"𝑒$ %&(⃗)*+

§ Electromagnetic Waves – propagation in vacuum
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𝑖𝑘 2 �⃗�J𝐸K = 0

𝑖𝑘×�⃗�J𝐸K =
𝑖𝜔
𝑐 �⃗�!𝐵K

𝑖𝑘 2 �⃗�!𝐵K = 0

𝑖𝑘×�⃗�!𝐵K = −
𝑖𝜔
𝑐 �⃗�J𝐸K

𝑘, �⃗�" and �⃗�& form a right-handed set: �⃗�" = 𝑘×�⃗�&
�⃗�& = −𝑘×�⃗�"

𝐸K =
𝜔
𝑘𝑐 𝐵K

𝐵K =
𝜔
𝑘𝑐
𝐸K

𝐸K = 𝐵K

𝜔 = 𝑘𝑐

𝐸 𝑟, 𝑡 = �⃗�!𝐸"𝑒$ %&(⃗)*+

𝐵 𝑟, 𝑡 = �⃗�#𝐵"𝑒$ %&(⃗)*+

§ Electromagnetic Waves – propagation in vacuum
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§ Electromagnetic Waves – propagation in vacuum

𝐸 𝑟, 𝑡 = �⃗�J𝐸K𝑒# "0L⃗MNO

𝐵 𝑟, 𝑡 = �⃗�!𝐵K𝑒# "0L⃗MNO

𝐸K = 𝐵K
𝜔 = 𝑘𝑐

𝑘, �⃗�J and �⃗�! form a right-handed set
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§ Electromagnetic Waves – energy flux and density
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§ Electromagnetic Waves – energy flux and density

𝐸 𝑟, 𝑡 = �⃗�J𝐸K𝑒# "0L⃗MNO

𝐵 𝑟, 𝑡 = �⃗�!𝐵K𝑒# "0L⃗MNO
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§ Electromagnetic Waves – energy flux and density

𝐸 𝑟, 𝑡 = �⃗�J𝐸K𝑒# "0L⃗MNO

𝐵 𝑟, 𝑡 = �⃗�!𝐵K𝑒# "0L⃗MNO

𝑆 =
𝑐
4𝜋 𝐸×𝐵 Poynting vector = directional energy flux
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§ Electromagnetic Waves – energy flux and density

𝐸 𝑟, 𝑡 = �⃗�J𝐸K𝑒# "0L⃗MNO

𝐵 𝑟, 𝑡 = �⃗�!𝐵K𝑒# "0L⃗MNO

𝑆 =
𝑐
4𝜋 𝐸×𝐵 time-averging to eliminate w t part
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§ Electromagnetic Waves – energy flux and density

𝐸 𝑟, 𝑡 = �⃗�J𝐸K𝑒# "0L⃗MNO

𝐵 𝑟, 𝑡 = �⃗�!𝐵K𝑒# "0L⃗MNO

𝑆 =
𝑐
8𝜋 𝐸K ! =

𝑐
8𝜋 𝐵K ! time-averging to eliminate w t part
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§ Electromagnetic Waves – energy flux and density

𝐸 𝑟, 𝑡 = �⃗�J𝐸K𝑒# "0L⃗MNO

𝐵 𝑟, 𝑡 = �⃗�!𝐵K𝑒# "0L⃗MNO

𝑆 =
𝑐
8𝜋 𝐸K ! =

𝑐
8𝜋 𝐵K !

𝑈C#@DE =
1
8𝜋

𝐸! + 𝐵!

time-averging to eliminate w t part
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§ Electromagnetic Waves – energy flux and density

𝐸 𝑟, 𝑡 = �⃗�J𝐸K𝑒# "0L⃗MNO

𝐵 𝑟, 𝑡 = �⃗�!𝐵K𝑒# "0L⃗MNO

𝑆 =
𝑐
8𝜋 𝐸K ! =

𝑐
8𝜋 𝐵K !

𝑈C#@DE =
1
8𝜋

𝐸K ! =
1
8𝜋

𝐵K !

time-averging to eliminate w t part
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§ Electromagnetic Waves – energy flux and density

𝐸 𝑟, 𝑡 = �⃗�J𝐸K𝑒# "0L⃗MNO

𝐵 𝑟, 𝑡 = �⃗�!𝐵K𝑒# "0L⃗MNO

𝑆 =
𝑐
8𝜋 𝐸K ! =

𝑐
8𝜋 𝐵K !

𝑈C#@DE =
1
8𝜋

𝐸K ! =
1
8𝜋

𝐵K !

→ velocity of energy flow:  
S⃗

T34567
= 𝑐

time-averging to eliminate w t part
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§ Lorentz force

§ Maxwell equations

§ Poynting vector

§ Electromagnetic waves

§ radiation spectrum

§ electromagnetic potentials
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§ electric and magnetic field

𝐸 𝑟, 𝑡 = �⃗�J𝐸K𝑒# "0L⃗MNO

𝐵 𝑟, 𝑡 = �⃗�!𝐵K𝑒# "0L⃗MNO

review of electrodynamics



Radiation Fields

§ electric and magnetic field

𝐸 𝑟, 𝑡 = �⃗�J𝐸K𝑒# "0L⃗MNO

𝐵 𝑟, 𝑡 = �⃗�!𝐵K𝑒# "0L⃗MNO
remember: 𝐸" = 𝐵"

review of electrodynamics
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§ electric and magnetic field

𝐸 𝑟, 𝑡 = �⃗�J𝐸K𝑒# "0L⃗MNO

𝐵 𝑟, 𝑡 = �⃗�!𝐸K𝑒# "0L⃗MNO

review of electrodynamics



Radiation Fields

§ electric and magnetic field

𝐸 𝑟, 𝑡 = �⃗�J𝐸K𝑒# "0L⃗MNO

𝐵 𝑟, 𝑡 = �⃗�!𝐸K𝑒# "0L⃗MNO

sufficient to focus on electric field alone...

review of electrodynamics
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§ electric and magnetic field

𝐸 𝑟, 𝑡 = �⃗�J𝐸K𝑒# "0L⃗MNO

review of electrodynamics



Radiation Fields

§ electric and magnetic field

𝐸 𝑟, 𝑡 = �⃗�J𝐸K𝑒# "0L⃗MNO
distribution of all possible w ?

review of electrodynamics



Radiation Fields

§ electric and magnetic field

𝐸 𝑟, 𝑡 = �⃗�J𝐸K𝑒# "0L⃗MNO
distribution of all possible w ?

!𝐸 𝜔 =
1
2𝜋(!"

"
𝐸 𝑡 𝑒#$%𝑑𝑡

§ frequency distribution (Fourier transformation of E(t))

review of electrodynamics



Radiation Fields

§ electric and magnetic field

𝐸 𝑟, 𝑡 = �⃗�J𝐸K𝑒# "0L⃗MNO
distribution of all possible w ?

• energy per unit area per unit time

§ radiation spectrum

!𝐸 𝜔 =
1
2𝜋(!"

"
𝐸 𝑡 𝑒#$%𝑑𝑡

§ frequency distribution

𝑑𝑊
𝑑𝐴	𝑑𝑡

=	?

review of electrodynamics



Radiation Fields

§ electric and magnetic field

𝐸 𝑟, 𝑡 = �⃗�J𝐸K𝑒# "0L⃗MNO
distribution of all possible w ?

• energy per unit area per unit time

§ radiation spectrum

!𝐸 𝜔 =
1
2𝜋(!"

"
𝐸 𝑡 𝑒#$%𝑑𝑡

§ frequency distribution

𝑑𝑊
𝑑𝐴	𝑑𝑡

= Poynting vector

review of electrodynamics



Radiation Fields

§ electric and magnetic field

𝐸 𝑟, 𝑡 = �⃗�J𝐸K𝑒# "0L⃗MNO
distribution of all possible w ?

• energy per unit area per unit time

§ radiation spectrum

!𝐸 𝜔 =
1
2𝜋(!"

"
𝐸 𝑡 𝑒#$%𝑑𝑡

§ frequency distribution

𝑑𝑊
𝑑𝐴	𝑑𝑡

=
𝑐
4𝜋

𝐸(𝑡) &

review of electrodynamics



Radiation Fields

§ electric and magnetic field

𝐸 𝑟, 𝑡 = �⃗�J𝐸K𝑒# "0L⃗MNO
distribution of all possible w ?

• energy per unit area per unit time

§ radiation spectrum

!𝐸 𝜔 =
1
2𝜋(!"

"
𝐸 𝑡 𝑒#$%𝑑𝑡

§ frequency distribution

• energy per unit area per unit frequency

𝑑𝑊
𝑑𝐴	𝑑𝜔

=	?

𝑑𝑊
𝑑𝐴	𝑑𝑡

=
𝑐
4𝜋

𝐸(𝑡) &

review of electrodynamics



Radiation Fields

§ electric and magnetic field

𝐸 𝑟, 𝑡 = �⃗�J𝐸K𝑒# "0L⃗MNO
distribution of all possible w ?

• energy per unit area per unit time

§ radiation spectrum

!𝐸 𝜔 =
1
2𝜋(!"

"
𝐸 𝑡 𝑒#$%𝑑𝑡

§ frequency distribution

• energy per unit area per unit frequency

𝑑𝑊
𝑑𝐴	𝑑𝜔

=	?

𝑑𝑊
𝑑𝐴	 =

𝑐
4𝜋X%(

(
𝐸(𝑡) &𝑑𝑡

𝑑𝑊
𝑑𝐴	𝑑𝑡

=
𝑐
4𝜋

𝐸(𝑡) &

review of electrodynamics



Radiation Fields

§ electric and magnetic field

𝐸 𝑟, 𝑡 = �⃗�J𝐸K𝑒# "0L⃗MNO
distribution of all possible w ?

• energy per unit area per unit time

§ radiation spectrum

!𝐸 𝜔 =
1
2𝜋(!"

"
𝐸 𝑡 𝑒#$%𝑑𝑡

§ frequency distribution

• energy per unit area per unit frequency

𝑑𝑊
𝑑𝐴	𝑑𝜔

=	?

𝑑𝑊
𝑑𝐴	 =

𝑐
4𝜋X%(

(
𝐸(𝑡) &𝑑𝑡

𝑑𝑊
𝑑𝐴	𝑑𝑡

=
𝑐
4𝜋

𝐸(𝑡) &

=
𝑐
4𝜋2𝜋X%(

(
𝐸(𝜔) &𝑑𝜔

review of electrodynamics



Radiation Fields

§ electric and magnetic field

𝐸 𝑟, 𝑡 = �⃗�J𝐸K𝑒# "0L⃗MNO
distribution of all possible w ?

• energy per unit area per unit time

§ radiation spectrum

!𝐸 𝜔 =
1
2𝜋(!"

"
𝐸 𝑡 𝑒#$%𝑑𝑡

§ frequency distribution

• energy per unit area per unit frequency

𝑑𝑊
𝑑𝐴	𝑑𝜔

=	?

𝑑𝑊
𝑑𝐴	 =

𝑐
4𝜋X%(

(
𝐸(𝑡) &𝑑𝑡

𝑑𝑊
𝑑𝐴	𝑑𝑡

=
𝑐
4𝜋

𝐸(𝑡) &

=
𝑐
4𝜋2𝜋X%(

(
𝐸(𝜔) &𝑑𝜔

=
𝑐
4𝜋2𝜋	 2X)
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§ examples

• finite pulse

Spectral shape
The fact that the time variation of the electrical field and its spectrum are related through a Fourier
transform makes it very convenient to derive a spectral shape from the characteristics of E(t)

 em-pulse radiation
spectra

a pulse of duration T has a spectrum
stretching over a bandwidth of ~1/T

A periodic signal with frequency &0 for
a duration, T will have a spectrum
width 1/T centred on &0

A similar periodic signal with a decay
time of T (damped oscillator) will produce
a spectrum of bandwidth 1/T centered on
&0, but without the higher and lower
frequency wiggles of previous example

Polarisation

mono-chromatic plane waves,
linearly polarised

Linearly polarised means the electric vector simply oscillates in direction
â1, which, with the propagation direction defines the plane of polarization.
By superimposing solutions corresponding to two such oscillations in
perpendicular we can construct the most general state of polarisation for a
wave of given k and &.

 the vector E traces out an ellipse
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Radiation Fields review of electrodynamics

§ Lorentz force

§ Maxwell equations

§ Poynting vector

§ electromagnetic waves

§ radiation spectrum

§ electromagnetic potentials
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a divergence-free field can be written as a rotation of a vector field
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𝑐
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𝜕𝑡 ∇ 2 𝐴 +
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𝑐
𝜕𝜙
𝜕𝑡

• expressed via potentials 𝐴 and 𝜙

• electromagnetic fields 𝐸 and 𝐵 equations
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𝐵 = ∇×𝐴

𝐸 = −∇𝜙 −
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• expressed via potentials 𝐴 and 𝜙

• electromagnetic fields 𝐸 and 𝐵 equations

how to solve them?
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𝑨 and 𝝓 are not uniquely determined!

how to solve them?
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= ∇× 𝐴 + ∇𝜓

Gauge transformation

𝑨 and 𝝓 are not uniquely determined!

how to solve them?
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can be used as constraint...
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𝜕𝑡 = 0 (condition to determine y )
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𝜙 𝑟, 𝑡 = B
𝜌(𝑟b, 𝑡 − 1𝑐 𝑟 − 𝑟b )

𝑟 − 𝑟b 𝑑c𝑟b

𝐴 𝑟, 𝑡 =
1
𝑐 B

𝚥(𝑟b, 𝑡 − 1𝑐 𝑟 − 𝑟b )
𝑟 − 𝑟b 𝑑c𝑟b
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𝐵 = ∇×𝐴

𝐸 = −∇𝜙 −
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𝑐
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𝑟 − 𝑟b 𝑑c𝑟b

𝐴 𝑟, 𝑡 =
1
𝑐 B

𝚥(𝑟b, 𝑡 − 1𝑐 𝑟 − 𝑟b )
𝑟 − 𝑟b 𝑑c𝑟b
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𝐵 = ∇×𝐴
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• expressed via retarded potentials 𝐴 and 𝜙

• electromagnetic fields 𝐸 and 𝐵 equations

𝜙 𝑟, 𝑡 = B
𝜌(𝑟b, 𝑡 − 1𝑐 𝑟 − 𝑟b )

𝑟 − 𝑟b 𝑑c𝑟b
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𝚥(𝑟b, 𝑡 − 1𝑐 𝑟 − 𝑟b )
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𝐵 = ∇×𝐴

𝐸 = −∇𝜙 −
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• expressed via retarded potentials 𝐴 and 𝜙

• electromagnetic fields 𝐸 and 𝐵 equations

𝜙 𝑟, 𝑡 = B
𝜌(𝑟b, 𝑡 − 1𝑐 𝑟 − 𝑟b )

𝑟 − 𝑟b 𝑑c𝑟b

𝐴 𝑟, 𝑡 =
1
𝑐 B

𝚥(𝑟b, 𝑡 − 1𝑐 𝑟 − 𝑟b )
𝑟 − 𝑟b 𝑑c𝑟b

𝑡' = 𝑡 −
1
𝑐 𝑟 − 𝑟'

• retarded time
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𝜌(𝑟b, 𝑡 − 1𝑐 𝑟 − 𝑟b )

𝑟 − 𝑟b 𝑑c𝑟b

𝐴 𝑟, 𝑡 =
1
𝑐 B

𝚥(𝑟b, 𝑡 − 1𝑐 𝑟 − 𝑟b )
𝑟 − 𝑟b 𝑑c𝑟b

𝑡' = 𝑡 −
1
𝑐 𝑟 − 𝑟'

• retarded time

→ time duration taken for a signal to reach its destination
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review of electrodynamics

𝐵 = ∇×𝐴

𝐸 = −∇𝜙 −
1
𝑐
𝜕𝐴
𝜕𝑡

• expressed via retarded potentials 𝐴 and 𝜙

• electromagnetic fields 𝐸 and 𝐵 equations

𝜙 𝑟, 𝑡 = B
𝜌(𝑟b, 𝑡 − 1𝑐 𝑟 − 𝑟b )

𝑟 − 𝑟b 𝑑c𝑟b

𝐴 𝑟, 𝑡 =
1
𝑐 B

𝚥(𝑟b, 𝑡 − 1𝑐 𝑟 − 𝑟b )
𝑟 − 𝑟b 𝑑c𝑟b

𝑡' = 𝑡 −
1
𝑐 𝑟 − 𝑟'

• retarded time

→ time duration taken for a signal to reach its destination
(propagation delay)
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§ Lorentz force

§ Maxwell equations

§ Poynting vector

§ Electromagnetic waves

§ radiation spectrum

§ electromagnetic potentials

summary!?
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§ summary

review of electrodynamics

𝜌(𝑟, 𝑡)

𝚥(𝑟, 𝑡)

a) we have known charge and current distributions
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• retarded potentials 𝐴 and 𝜙

𝜙 𝑟, 𝑡 = B
𝜌(𝑟b, 𝑡 − 1𝑐 𝑟 − 𝑟b )

𝑟 − 𝑟b 𝑑c𝑟b

𝐴 𝑟, 𝑡 =
1
𝑐 B

𝚥(𝑟b, 𝑡 − 1𝑐 𝑟 − 𝑟b )
𝑟 − 𝑟b 𝑑c𝑟b

§ summary a) we have known charge and current distributions

b) calculate their retarded potentials
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§ summary
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𝐵 𝑟, 𝑡 = ∇×𝐴

𝐸 𝑟, 𝑡 = −∇𝜙 −
1
𝑐
𝜕𝐴
𝜕𝑡

• expressed via retarded potentials 𝐴 and 𝜙

• electromagnetic fields 𝐸 and 𝐵

𝜙 𝑟, 𝑡 = B
𝜌(𝑟b, 𝑡 − 1𝑐 𝑟 − 𝑟b )

𝑟 − 𝑟b 𝑑c𝑟b

𝐴 𝑟, 𝑡 =
1
𝑐 B

𝚥(𝑟b, 𝑡 − 1𝑐 𝑟 − 𝑟b )
𝑟 − 𝑟b 𝑑c𝑟b

a) we have known charge and current distributions

b) calculate their retarded potentials

c) determine E and B
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§ summary

review of electrodynamics

𝐵 𝑟, 𝑡 = ∇×𝐴

𝐸 𝑟, 𝑡 = −∇𝜙 −
1
𝑐
𝜕𝐴
𝜕𝑡

• expressed via retarded potentials 𝐴 and 𝜙

• electromagnetic fields 𝐸 and 𝐵

𝜙 𝑟, 𝑡 = B
𝜌(𝑟b, 𝑡 − 1𝑐 𝑟 − 𝑟b )

𝑟 − 𝑟b 𝑑c𝑟b

𝐴 𝑟, 𝑡 =
1
𝑐 B

𝚥(𝑟b, 𝑡 − 1𝑐 𝑟 − 𝑟b )
𝑟 − 𝑟b 𝑑c𝑟b

a) we have known charge and current distributions

b) calculate their retarded potentials

c) determine E and B

𝑆 =
𝑐
4𝜋

𝐸×𝐵


