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(they are hence trapped by closed field lines...)

*accelerated charged particles radiate!
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= | orentz force

" rate of work done by fields (on non-relativistic particles)
dEy; S
kin — q =3 E

dt ——

current j = p,V; p,= charge density
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= | orentz force

" rate of work done by fields (on non-relativistic particles)

dey; =
kin — j’ E exin= energy density
dt




Radiation Fields review of electrodynamics

* Lorentz force

= Maxwell equations
* Poynting vector

" electromagnetic waves
" radiation spectrum

* electromagnetic potentials




Radiation Fields review of electrodynamics

» Maxwell equations




Radiation Fields

review of electrodynamics

» Maxwell equations

they describe the behaviour of both electric and magnetic fields
and
their interaction with matter




Radiation Fields review of electrodynamics

» Maxwell equations

. R Gauss’ law
D =€E V- -D=A4np
€: dielectric constant
G—\\ //.-—b

they describe the behaviour of both electric and magnetic fields
and
their interaction with matter

equations are given in Gaussian units




Radiation Fields review of electrodynamics

» Maxwell equations

No magnetic monopoles

. R Gauss’ law
D =€E V-D =drp V-B=0
€: dielectric constant
&—\ /.-b

they describe the behaviour of both electric and magnetic fields
and
their interaction with matter

equations are given in Gaussian units




Radiation Fields review of electrodynamics

» Maxwell equations

{ oles
Gauss’ law No magnetic monop

D =¢E V-D=d4mp V-B=0
€: dielectric constant
&—\ /.-h

Faraday’s law
of induction

_—" 3
/
/;j”"

1 ¢B
XE=-=- —
VIE c at

they describe the behaviour of both electric and magnetic fields
and
their interaction with matter

equations are given in Gaussian units




Radiation Fields review of electrodynamics

» Maxwell equations

Gauss’ law No magnetic monopoles
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(which in turn can accelerate charges, leading to a current)
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equations are given in Gaussian units
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a current and/or time varying E-field induces a B-field

U: magnetic permeability

they describe the behaviour of both electric and magnetic fields
and
their interaction with matter

equations are given in Gaussian units
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» Maxwell equations
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the energy density changes at a rate given by the work done on the charges,
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» Maxwell equations
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= Radiation?

" Poynting theorem:
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the rate of change of total energy within a volume
is equal to the net inward flow of energy through the bounding surface
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= Radiation

In electrostatics both E and B decrease like 2
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— § decreases like 7™* and thus the integral goes to zero since the surface area increases only as ™=,

" Poynting theorem:
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the rate of change of total energy within a volume
is equal to the net inward flow of energy through the bounding surface
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= Radiation

In electrostatics both E and B decrease like 2

— S decreases like r—*

For time varying fields E and B decrease like 1

— the integral can contribute a finite amount to the rate of change of energy of the system.

" Poynting theorem:

%

d R
E(Umech + Ufield) = _f S-dA
2

the rate of change of total energy within a volume
is equal to the net inward flow of energy through the bounding surface

and thus the integral goes to zero since the surface area increases only as r™~.
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= Radiation

In electrostatics both E and B decrease like r—2

4 2

— § decreases like 7™* and thus the integral goes to zero since the surface area increases only as ™=,

For time varying fields E and B decrease like 1

— the integral can contribute a finite amount to the rate of change of energy of the system.

This energy flowing in (or out) at large distances is called radiation.

" Poynting theorem:

%

d 5 .
E(Umech + Ufield) = _L S-dA SzE(EXH)

the rate of change of total energy within a volume
is equal to the net inward flow of energy through the bounding surface
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" Electromagnetic VWaves — Maxwell equations in vacuum
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" Electromagnetic VWaves — Maxwell equations in vacuum
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" Electromagnetic VWaves — Maxwell equations in vacuum

V-E=0
V-B=0
o E 10B . (vxE) 1 9VXB
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" Electromagnetic VWaves — Maxwell equations in vacuum

V-E=0
V-B=0
o E 10B . (vxE) 1 9VXB
= —— > VX(VXE) = ——
c Ot c Ot
. 10E _ 19VxB  19%E
VX ot ¢ dt  c? 0t>

Vx(VxE) =V(V-E) — V?E
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" Electromagnetic VWaves — Maxwell equations in vacuum

V-E=0
V-B=0
o E 10B . (vxE) 1 9VXB
= —— > VX(VXE) = ——
c Ot c Ot
. 10E _ 19VxB  19%E
VXB:EE ¢ dt  c? 0t>

Vx(VxE) = V(V-E)

V24,
reminder: V24 = V24,

VZA,
(it is a vectorial Laplace operator...)
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" Electromagnetic VWaves — Maxwell equations in vacuum
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V-B=0
o E 10B . (vxE) 1 9VXB
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" Electromagnetic VWaves — Maxwell equations in vacuum
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" Electromagnetic VWaves — Maxwell equations in vacuum
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V-B=0
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" Electromagnetic VWaves — Maxwell equations in vacuum
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" Electromagnetic VWaves — Maxwell equations in vacuum

V-E=0
V-B=0
. 19B
UXE = — ——
c Ot
. 10E
VXB = ——
c Ot
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analogy for B..
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" Electromagnetic VWaves — Maxwell equations in vacuum

V-E=0
V-B=0
. 19B
UXE = — ——
c Ot
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VXB = ——
c Ot
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c2 Jt?

.~ 10%B
B——— —

c? 0t?




Radiation Fields

review of electrodynamics

" Electromagnetic VWaves — Maxwell equations in vacuum

V-E=0
V-B=0
. 10B
UXE = — ——
c Ot
. 10E
VXB = ——
c Ot

\

(f 1926
E———_ —
c2 Jt2
.~ 10%B
S
\_ c2 Jt? )

well known wave-equations for E (7, t) and B(7, t)
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" Electromagnetic VWaves — propagation in vacuum

Ansatz:

r

E@ t) = @ E ei(kT-ot)

B(# t) = d,Byei(k7-wt)

~

J

.= 10% A
VE-2erz =Y
, 10%B
ViB— o5 =
\_ c4 dt Y
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" Electromagnetic VWaves — propagation in vacuum

Ansatz:

4 )

E@ t) = @ E ei(kT-ot)

—_— (T >
B(#t) = d,B,el(k7-wt)
\_ /' k=k#, #:unitvector in direction of wave propagation
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" Electromagnetic VWaves — propagation in vacuum

Ansatz:

4 )

E@ t) = @ E ei(kT-ot)

—_— (T >
B(#t) = d,B,el(k7-wt)
\_ /' k=k#, #:unitvector in direction of wave propagation
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" Electromagnetic VWaves — propagation in vacuum

Ansatz:

-
E@# t)

B(#,t)

alEoei(%-‘F—wt)

C‘izBOei(Té-f—wt)

d,: unit vector, direction to be determined
E,: complex constant, value to be determined
?
d,: unit vector, direction to be determined
B: complex constant, value to be determined

—

k = kn, mn:unit vector in direction of wave propagation
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" Electromagnetic VWaves — propagation in vacuum

Ansatz:

-
E@# t)

B(#,t)

alEoei(%-‘F—wt)

C‘izBOei(Té-f—wt)

d,: unit vector, direction to be determined

E,: complex constant, value to be determined
?

d,: unit vector, direction to be determined
B: complex constant, value to be determined

—

k = kn, mn:unit vector in direction of wave propagation

insert into Maxwell equations —
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" Electromagnetic VWaves — propagation in vacuum

-

VXE

—

|
o

|
o

10B

c Ot

10E
¢ ot
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" Electromagnetic VWaves — propagation in vacuum

<
il
|
o

<
eel)
|
o

E(# t) = G,E,ei(ki-wt)

»
|

— 1 aB E(F’ t) = aZBOei(ﬁ-F—wt)
VXE

c Ot

.  10E
¢ ot
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V-E=0
V-B=0
VXE = 10B
¢ Ot
., 10E
VXB =

T cat

E(# t) = G,E,ei(ki-wt)

»
|

B(# t) = d,B,ei(k7-wt)

lk C_ilEO — O
lk C_)LZBO — O

lw |
lan1E0 —_ _az 0

C
N lw
lanzBO — —_al 0
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lk C_il EO =0
both d, and @, are orthogonal to the direction of the wave propagation k <

.70 o

L lk a, BO =0
0> l(l) -
lan1E0 - - azBO

C

7> l(,() -
lanzBO - — alEO
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" Electromagnetic VWaves — propagation in vacuum

lk C_il EO =0
both d, and @, are orthogonal to the direction of the wave propagation k <
.70 o
L lk a, BO =0
— ._) - iw -
lan1E0 - - azBO
C
a, and d, are orthogonal to each other <
7> l(,() -
L lanzBO - — alEO




Radiation Fields review of electrodynamics

" Electromagnetic VWaves — propagation in vacuum

k,d; and @, form a right-handed set ik - C_ilEO =0
ik C_)LZBO =0
0> l(l) -
lan1E0 — _azBO
C
7> l(,() -
lanzBO — —_alEO
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" Electromagnetic VWaves — propagation in vacuum

k,d; and @, form a right-handed set: @, = kxa, ik - C_il Eo=0
G, = —kxd,
lk C_)LZBO =0
I > l(l) -
lan1E0 —_— _azBO
C
7> l(,() -
lanzBO — —_alEO
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" Electromagnetic VWaves — propagation in vacuum

k,d; and @, form a right-handed set:

lk y C_ilEO — O
lk . azBO — O
lw |
lan1E0 —_ _azBO
C
lw
lanzBO — —_alEO
C
— C—ilEOel(k-F—a)t)
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" Electromagnetic VWaves — propagation in vacuum

k,d; and @, form a right-handed set: @, = kxa, ik - C_il Eo=0
d, = —kxd,
.70 o
lk . azBO =0
Eo=—B | fxa, By = La,p
- T IKkXa = —a
0 kc 0 ! 1+~0 C 20
w ) <
By=—E = lw
0 kC 0 lkXC_iZBO — __C_ilEO
N C
E
E(#t) = d,E ei(kT-wt)
B(# t) = d,B el(kT-wt)
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" Electromagnetic VWaves — propagation in vacuum

k,d; and d, form a right-handed set: @, = l?)iaz ik - C_il Eo=0
a, = —kXd,
lk . azBO — O
[ W (o iw
EO — BO EO — _BO lan1E0 — _azBO
kC v C
< < <
k B, = —E lw
w = KC = — .70
0 kC 0 lkXC_iZBO — __C_ilEO
\ < C
E
E(#t) = d,E ei(kT-wt)
B(# t) = d,B el(kT-wt)
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-

E@t) = G,E el(k7-wt)

B(# t) = d,Byei(k7-wt)

E():BO
w = kc

k,d, and d, form a right-handed set
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" Electromagnetic Waves — energy flux and density

-

E@t) = G,E el(k7-wt)

B(# t) = d,Byei(k7-wt)




Radiation Fields review of electrodynamics

" Electromagnetic Waves — energy flux and density

-

E@t) = G,E el(k7-wt)

B(# t) = d,Byei(k7-wt)

- C - —
S =— (E )(B) Poynting vector = directional energy flux
4t
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-

E('f), t) — C_ilEOei(%.F-

B(# t) = d,B ek

(5) = = (ExE)

-wt)

time-averging to eliminate wt part




Radiation Fields review of electrodynamics

" Electromagnetic Waves — energy flux and density

-

E@t) = G,E el(k7-wt)

B(# t) = d,Byei(k7-wt)

<§> — i |E |2 — i |B |2 time-averging to eliminate wf part
8V 8 0
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" Electromagnetic Waves — energy flux and density

-

E@t) = G,E el(k7-wt)

B(# t) = d,Byei(k7-wt)

<§> — i |E |2 — i |B |2 time-averging to eliminate wf part
8V 8 0

1
Uriela = ar (E* + B?)
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" Electromagnetic Waves — energy flux and density

-

E@t) = G,E el(k7-wt)

B(# t) = d,Byei(k7-wt)

<§> — i |E |2 — i |B |2 time-averging to eliminate wf part
8V 8 0

1 1
(Ufield> = gt |Eo|2 — % |Bo|2
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" Electromagnetic Waves — energy flux and density

-

E@t) = G,E el(k7-wt)

B(# t) = d,Byei(k7-wt)

<§> — i |E |2 — i |B |2 time-averging to eliminate wf part
8V 8 0

1 1
(Ufield> = gt |Eo|2 — % |Bo|2

-

($)

— velocity of energy flow: =C

(Ufiela)
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" Lorentz force

* Maxwell equations

* Poynting vector

» Electromagnetic waves
* radiation spectrum

* electromagnetic potentials
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" electric and magnetic field

-

E@t) = G,E el(k7-wt)

B(# t) = d,Byei(k7-wt)
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" electric and magnetic field

-

E@t) = G,E el(k7-wt)

B(# t) = d,Byei(k7-wt)

remember: E, = B,
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" electric and magnetic field

-

E@t) = G,E el(k7-wt)

B@# t) = d,E,ei(k7-wt)
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" electric and magnetic field

o 0% - i(k-7—wt sufficient to focus on electric field alone...
E(", t) = a,Eye ( )
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" electric and magnetic field

E@t) = G,E el(k7-wt)
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" electric and magnetic field

E#t) = ,E,elE{e))

distribution of all possible @ ?
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" electric and magnetic field

E#t) = ,E,elE{e))

distribution of all possible @ ?

u frequency d|str|but|0n (Fourier transformation of £(¢))

AN

1 ® .
E(w) = —J E(t)et®tdt
2T )_ o
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" electric and magnetic field

E#t) = ,E,elE{e))

distribution of all possible @ ?

* frequency distribution

AN

1 ® .
E(w) = —J E(t)et®tdt
2T )_ o

" radiation spectrum

° energy per unit area per unit time

aw
dA dt
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" electric and magnetic field

E#t) = ,E,elE{e))

distribution of all possible @ ?

* frequency distribution

AN

1 ® .
E(w) = —J E(t)et®tdt
2T )_ o

" radiation spectrum

° energy per unit area per unit time

dWw

dAd Poynting vector
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" electric and magnetic field

E#t) = ,E,elE{e))

distribution of all possible @ ?

* frequency distribution

AN

1 ® .
E(w) = —J E(t)et®tdt
2T )_ o

" radiation spectrum

° energy per unit area per unit time

dw C

_ 2
dde " an FO
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" electric and magnetic field

E#t) = ,E,elE{e))

distribution of all possible @ ?

* frequency distribution

AN

1 ® .
E(w) = —J E(t)et®tdt
2T )_ o

" radiation spectrum

° energy per unit area per unit time

dw C

_ 2
dde " an FO

* energy per unit area per unit frequency

aw
dAdw
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" electric and magnetic field

E#t) = ,E,elE{e))

distribution of all possible @ ?

* frequency distribution

AN

1 ® .
E(w) = —J E(t)et®tdt
2T )_ o

" radiation spectrum

° energy per unit area per unit time

dw C

_ 2
dde " an FO

aw _ ¢ foo|Et |2dt
dA ~ 4m)_ ©

v

* energy per unit area per unit frequency

aw
dAdw
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" electric and magnetic field

E#t) = ,E,elE{e))

distribution of all possible @ ?

* frequency distribution

AN

1 ® .
E(w) = —J E(t)et®tdt
2T )_ o

" radiation spectrum

° energy per unit area per unit time

dw C

aw

_ 2
dde " an FO

* energy per unit area per unit frequency

aw
dAdw

v

a_c f T IE@de
dA ~ 4m)_

c
= —an |E (w)]|*dw

41t
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" electric and magnetic field

E#t) = ,E,elE{e))

distribution of all possible @ ?

* frequency distribution

AN

1 ® .
E(w) = —J E(t)et®tdt
2T )_ o

" radiation spectrum

° energy per unit area per unit time

dw C

d

_ 2
dde " an FO

* energy per unit area per unit frequency

aw
dAdw

v

w_c° foo|Et |2dt
dA ~ 4m)_ ©

[00]

c
= —an |E (w)]|*dw

41t

- ZleE(w)lzdw
A 0
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" electric and magnetic field

E#t) = ,E,elE{e))

distribution of all possible @ ?

* frequency distribution

AN

1 ® .
E(w) = —J E(t)et®tdt
2T )_ o

" radiation spectrum

° energy per unit area per unit time

dw C

aw

_ 2
dde " an FO

* energy per unit area per unit frequency

aw
dAdw

v

dA

c LOOIE(a))lzda)
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" electric and magnetic field

E#t) = ,E,elE{e))

distribution of all possible @ ?

* frequency distribution

AN

1 ® .
E(w) = —J E(t)et®tdt
2T )_ o

" radiation spectrum

° energy per unit area per unit time

dw C dw

= 2 “|E@)Pd
aade anFO! i =, 1B

v

* energy per unit area per unit frequency

aw )
dAde ~ CIE(@)
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" radiation spectrum — energy per unit area and unit frequency

aw EC)?
dAde ~ CIE()
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" radiation spectrum — energy per unit area and unit frequency

aw EC)?
dAde ~ CIE()

= examples
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" radiation spectrum — energy per unit area and unit frequency

aw EC)?
dAde ~ CIE()

= examples epulse | E()

N

; > “'u. T

AN

* finite pulse
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" radiation spectrum — energy per unit area and unit frequency

— 2
——— = c|E(w)|
dAde  CIE@)
] examples em-pulse LE® dEWE vadiation
an spectra
s finite pulse MRy
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" radiation spectrum — energy per unit area and unit frequency

——— =c|E(w)]|?
dA dw (@)
= examples empulse B B radiation
[ spectra
*finite pulse /e»f /\ |
v ) s
E(t)
* periodic signal of finite time sincaot
< r o
NSRS
t
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" radiation spectrum — energy per unit area and unit frequency

7 2
T do c|E(w)]

= examples

* finite pulse

* periodic signal of finite time

em-puLse

y

-
[

==

A

E(t)

sin wyt

2N

EW)* radiation
spectra

v AR
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" radiation spectrum — energy per unit area and unit frequency

= c|E(w)]?

dA dw
= examples empulse (£
* finite pulse /G»J\
E(t)
* periodic signal of finite time sincaot
N T o
B T
1 E(t
< r .
« decaying periodic signal of finite time [\ o
o

EW)* radiation
spectra

Vi




Radiation Fields

review of electrodynamics

" radiation spectrum — energy per unit area and unit frequency

= c|E(w)]?

dA dw
= examples empulse (£
* finite pulse /G»J\
E(t)
* periodic signal of finite time sincaot
N T o
B T
1 E(t
< r .
« decaying periodic signal of finite time [\ o
o

EW)* radiation
spectra

Vi

| E(w)[?
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" Lorentz force

* Maxwell equations

* Poynting vector

" electromagnetic waves
" radiation spectrum

* electromagnetic potentials
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" Electromagnetic Potentials

* Maxwell equations

V-E = 47mp
V-B=0
, 10B
UXE = ———
c Ot .
. 4m . 10E
VXB =—]
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" Electromagnetic Potentials

* Maxwell equations

V-E=4np
V-B=0
S 10B
UXE = ———
c Ot .
-~ 4m_, 10F
VXB = ]

c ot

* vector fields

E(#t) B@0t)
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" Electromagnetic Potentials

* Maxwell equations

V-E=4np
V-B=0
, 108
VXE = ———
c Ot .
VX§_4T[_>+10E
_c] c Ot

* vector fields

E(#t) B@0t)

[

»

* potential A

a divergence-free field can be written as a rotation of a vector field
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" Electromagnetic Potentials

* Maxwell equations

V-E=4np
V-B=0
S 10B
UXE = ———
c Ot .
-~ 4m_, 10F
VXB = ]

c ot

* vector fields

E(#t) B@0t)

v

* potential A

B

ﬁ

VXA
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" Electromagnetic Potentials

* Maxwell equations * potential A
V-E = 41p
V-B =0 > B = Vx4
., 10B L 10VxA 104
E= T CVE = T T
- 4m 1 0F
VXB = ] ~ ot

* vector fields

E(#t) B@0t)
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" Electromagnetic Potentials

* Maxwell equations * potential A
V-E = 41p
V-B =0 > B = Vx4
., 10B L 10Vx4 104
E= e L e L
- 4m 1 0F
VXB = ] ~ ot

* vector fields

E(#t) B@0t)
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" Electromagnetic Potentials

* Maxwell equations

V-E=4np
V-B=0
S 10B
UXE = ———
c Ot .
-~ 4m_, 10F
VXB = ]

c ot

* vector fields

E(#t) B@0t)

v

v

* potential A
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" Electromagnetic Potentials

* Maxwell equations * potential A
V.-E = 41tp
V-B =0 > B = VxA
onE o L 0B _on (7] 0A
“E = Ccat . ] B C at
UxB = 41 1 OFE
] c dt

* vector fields

e B> a curl-free field can be written as a gradient of a potential
E(r,t) B(#1t) ; P
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" Electromagnetic Potentials

* Maxwell equations * potential A
V.-E = 41tp
V-B=0 > B = VxA
VXE L0B 0=vx(E+-2
“E = Ccat . ] c Ot
IxB = 41 1 OFE \ -~ /
It (E 1 aﬁ) v
+——]=—
* vector fields ¢ ot

e B> a curl-free field can be written as a gradient of a potential
E(r,t) B(#1t) ; P
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" Electromagnetic Potentials

* Maxwell equations

V-E=4np
V-B=0
S 10B
VXE = ———
c Ot .
. 4w 10E
VXB =—]

* potentials A and ¢
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" Electromagnetic Potentials

* Maxwell equations

V-E =4mnp
satisfied by construction

. 4w 10E
_I___
C c Ot

* potentials A and ¢
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" Electromagnetic Potentials

* Maxwell equations

V-E=4np
. 4mw_ 10E
VXB =—]

* potentials A and ¢
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" Electromagnetic Potentials

* Maxwell equations

V-E=4np

* potentials A and ¢

ﬁ

B = VA

194

TP ca

tr1
|

turn equation around!?
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" Electromagnetic Potentials

* Maxwell equations * potentials A and ¢
V.-E = 41tp
B = VXA
2 oy ] 0A
. B c Ot
- 4m_, 10E
VXB =—]
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" Electromagnetic Potentials

* Maxwell equations

V-E=4np

- 4m
VXB =—]
C

* potentials A and ¢
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" Electromagnetic Potentials

* Maxwell equations

* potentials A and ¢

V-E=4np
B = VxA
2 o 104
. B c Ot
o A 10E
XB=—]+——
c] c Ot
_ B 10V-A 10 ( - 18 10¢\ 10%¢p 19/ . 10¢
tp=V-E=VVp -5 m =~V Vg oo (VA4 50 o5 =V Vo - Gon — g (VA g
10%¢ 10 ( - 108¢
—— Vg =g (VA g)
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" Electromagnetic Potentials

* Maxwell equations * potentials A and ¢

V-E =4mp
B = VXA
7 v 104
B B ¢ Ot
g A 10E
XD =— —
¢/ T ot
Ap=V-E=—-V-V EOV_/T_ V-V li( ;109 la_qb)_ V-V lﬁ lﬁ( A 199
P = B NPT ¢ o cdt cot) RS TORT c ot
— >  VZ i62_¢—4 }i(v q l—¢)> inhomogeneous wave-equation
czatz P TCo c s k
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" Electromagnetic Potentials

* Maxwell equations * potentials A and ¢
B = VxA
2 oy ] 0A
. B c Ot
- 4m 10FE 1 02 10 . 109
SR VSO
¢! T at c? dt? " ot +cat
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" Electromagnetic Potentials

* Maxwell equations * potentials A and ¢
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" Electromagnetic Potentials

* Maxwell equations * potentials A and ¢
B = VXA
. / B c dt
- 4m 10FE 1 0%¢ 10 . 109
g Ay 10, 1 g e
¢! T at ¢ c? dt? P ot +cat

VB = xxd = 27422 (g 104
B AT A YT
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" Electromagnetic Potentials

* Maxwell equations * potentials A and ¢

B = Vx4
. 4w 10E 1 92 10 . 10
o = 10 gy 100, 10 (g4 100
C c Ot c? 0t? c dt c dt
T rt VXVxA = —V24 + V(VA) . 21 T R
o v = 27112 vg - 120) O L I L BRLL
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" Electromagnetic Potentials

* Maxwell equations * potentials A and ¢

ol
I
<]
X
]

. 4m_ 10E 26 10 N
B =10 g L0y 10y, 100)
c c dt c? 0 c ot c 0o
4T, 10 194\ ~ TTAs v L. 10%4  4m, 1d(_ . 193¢
VxB = VXVXA——”cat( ‘2&) g VA-Gam =T teg(V At )
inhomogeneous wave-equation
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" Electromagnetic Potentials

* electromagnetic fields £ and B equations

* expressed via potentials A and ¢

1 92¢ 19/ . 13¢
240 _ 2 ¥ _ Y. ~Y¥
v 4mp cat(v A+cat)

, 1024 4m_ 190 . 1d¢
VZA———=——]+——(V'A+EE)
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" Electromagnetic Potentials

* electromagnetic fields £ and B equations

* expressed via potentials A and ¢

1 0%¢ 10 . 10¢
24 2 ¥ _ Y% (. LY
v c2 dt?2 4mp c dt (V A+ C at)

g 1924  4nm +1a(V E+1a¢)
c2 0tz / c 0t

how to solve them?
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" Electromagnetic Potentials

* electromagnetic fields £ and B equations

V2 ———— =dmp ——— (V- A+ ——

1 0%¢ 10( R 18(]5)
c2 dt?2 c ot c Ot

how to solve them?

V-A+-—

L, 10%4 4w 10( N 1aqb)
B c dt

4 and ¢ are not uniquely determined!
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" Electromagnetic Potentials

* electromagnetic fields £ and B equations

Gauge transformation

B = VXA = Vx(4 + Vi)
2 104
B c Ot
* expressed via potentials A and ¢
1 02¢ 10 19¢
Vip ——=—— =4 ———(V-A ——)
c? Ot? VT * c Ot
how to solve them?
g 1924 4nﬁ+1a(v A+1a¢)
2otz . ¢! cat c dt

4 and ¢ are not uniquely determined!
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" Electromagnetic Potentials

- —
* electromagnetic fields £ and B equations Gauge transformation

B = VXA = Vx(4 + Vi)
2 104 . 10(4 + V)
B c Ot = Ve C ot
* expressed via potentials A and ¢
1 02¢ 10 . 1d¢
Vip ——=—— =4 ———(V-A ——)
c? Ot? P ot * c Ot

how to solve them?

4 and ¢ are not uniquely determined!
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" Electromagnetic Potentials

- —
* electromagnetic fields £ and B equations Gauge transformation

B = VXA = Vx(4 + Vi)
5 104 ~ v( 1a¢) 104
B c Ot - ¢ c dt c Ot
* expressed via potentials A and ¢
1 02¢ 10 . 1d¢
Vip ——=—— =4 ———(V-A ——)
c? Ot? P ot * c Ot

how to solve them?

4 and ¢ are not uniquely determined!




Radiation Fields review of electrodynamics

" Electromagnetic Potentials

* electromagnetic fields E and B equations Gauge transformation
B = Vx4 = Vx(4 + V)
, 194 19y\ 194
e e
c dt c dt c dt

* expressed via potentials A and ¢

1 92 10/ . 10
V2 ——_¢:47'[p———(V°A ¢)
c dt

how to solve them?

4 and ¢ are not uniquely determined!

1) can be chosen whichever way we see fit!
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" Electromagnetic Potentials

- —
* electromagnetic fields £ and B equations Gauge transformation

B = VxA = Vx(4 + V)
5 o 104 ~ v( 1a¢) 104
T ¢_c6t B c dt c 0t

* expressed via potentials A and ¢

1 92¢ 1af_ . 1d¢
240 _ 7 ¥ _ v, s

can be used as constraint...

g 1924 4m. 19f > 10¢
c2 ot2 c] c Ot c Ot

4 and ¢ are not uniquely determined!

1) can be chosen whichever way we see fit!
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" Electromagnetic Potentials

- —
* electromagnetic fields £ and B equations Gauge transformation

B = VXA = Vx(4 + Vi)
5 104 ~ v( 1a¢) 104
B c Ot - ¢ c dt c Ot
* expressed via potentials A and ¢
1 02¢ 10 . 1d¢
Vip ——=—— =4 ———(V-A ——)
c? Ot? P ot * c Ot
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" Electromagnetic Potentials

* electromagnetic fields £ and B equations

B = VxA
2 104
N c Ot

* expressed via potentials A and ¢

Gauge transformation
= Vx(4 + V)

=7(0-30) ~ac
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" Electromagnetic Potentials

* electromagnetic fields £ and B equations

* Lorentz gauge:

. 19¢
V- A+—=0 (condition to determine )
c ot
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" Electromagnetic Potentials

* electromagnetic fields £ and B equations
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* electromagnetic fields £ and B equations
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* electromagnetic fields E and B equations
B =VXxA4

. 194
E=-Ve—T%¢

* expressed via retarded potentials A and ¢

1., o
p(r', t —IF —7'))

o, t) = f

¥ — 7|
1.,

Jjr' t =< |r =7'])
A t) ——j _C 37

* retarded time

|r — r’ | — time duration taken for a signal to reach its destination




Radiation Fields review of electrodynamics

" Retarded Electromagnetic Potentials
* electromagnetic fields E and B equations
B =VXxA4
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* expressed via retarded potentials A and ¢
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* electromagnetic fields E and B
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a) we have known charge and current distributions
b) calculate their retarded potentials

c) determine £ and B




Radiation Fields

review of electrodynamics

" summary

* electromagnetic fields £ and B

B(#,t) = VXA
R 104
E(G ) = -V ———
7. 6) c Ot
* expressed via retarded potentials A and ¢ ’
- 1 - -7
p(r',t —ZIr =77])
7t) = — a7’
00 f |7 =7
>, 1 - -7
. 1 (Jat=ZIr =7
A7 t) = —j — d37'
c ¥ — 1]

a) we have known charge and current distributions

b) calculate their retarded potentials

c) determine £ and B




