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Derive a simple expression for the energy flux, relating it to the local
temperature gradient - called Rosseland Approximation.
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§ equation of radiative transfer

§ scattering = dispersion of a beam of particles by collisions (or similar interactions)

§ random walk

• net displacement of photons

• number of scattering events
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no assumption about photons, particles, etc.



Scattering Effects photon-electron interactions

Random walks Net displacement of photon after N free
paths:

Mean vector displacement vanishes

Now all the cross terms like                  vanish since the directions of
different path segments are presumed uncorrelated.

but mean square displacement traveled
by photon:

As an example, consider the escape of a photon from a cloud of size L. If the
mean free path is                then the optical depth of the cloud is ( ~ L/l. In N
steps the photon will travel a distance                       . Equating this with the
size of the cloud L yields the required number of steps for escape, N ~ (2 for
optically thick region, for optically thin, 1 - e*( + (, so N~(

Radiative Diffusion: Rosseland Approx
Derive a simple expression for the energy flux, relating it to the local
temperature gradient - called Rosseland Approximation.

First assume that the material (temperature,
absorption coeff etc.) depend on depth in the
medium - called Plane-Parallel assumption.

Convenient to use µ = cos "

Therefore, transfer Eqn:

no assumption about photons, particles, etc.

but we are primarily interested in photons!



Scattering Effects photon-electron interactions

Random walks Net displacement of photon after N free
paths:

Mean vector displacement vanishes

Now all the cross terms like                  vanish since the directions of
different path segments are presumed uncorrelated.

but mean square displacement traveled
by photon:

As an example, consider the escape of a photon from a cloud of size L. If the
mean free path is                then the optical depth of the cloud is ( ~ L/l. In N
steps the photon will travel a distance                       . Equating this with the
size of the cloud L yields the required number of steps for escape, N ~ (2 for
optically thick region, for optically thin, 1 - e*( + (, so N~(

Radiative Diffusion: Rosseland Approx
Derive a simple expression for the energy flux, relating it to the local
temperature gradient - called Rosseland Approximation.

First assume that the material (temperature,
absorption coeff etc.) depend on depth in the
medium - called Plane-Parallel assumption.

Convenient to use µ = cos "

Therefore, transfer Eqn:

no assumption about photons, particles, etc.

but we are primarily interested in photons!

what effects lead to scattering of photons?



Scattering Effects photon-electron interactions

Random walks Net displacement of photon after N free
paths:

Mean vector displacement vanishes

Now all the cross terms like                  vanish since the directions of
different path segments are presumed uncorrelated.

but mean square displacement traveled
by photon:

As an example, consider the escape of a photon from a cloud of size L. If the
mean free path is                then the optical depth of the cloud is ( ~ L/l. In N
steps the photon will travel a distance                       . Equating this with the
size of the cloud L yields the required number of steps for escape, N ~ (2 for
optically thick region, for optically thin, 1 - e*( + (, so N~(

Radiative Diffusion: Rosseland Approx
Derive a simple expression for the energy flux, relating it to the local
temperature gradient - called Rosseland Approximation.

First assume that the material (temperature,
absorption coeff etc.) depend on depth in the
medium - called Plane-Parallel assumption.

Convenient to use µ = cos "

Therefore, transfer Eqn:

no assumption about photons, particles, etc.

but we are primarily interested in photons!

what effects lead to scattering of photons?

→ photon-electron interactions
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• no energy transfer from electron to photon

• photon looses energy to kick electron

§ inverse Compton scattering takes place in...
• stellar interiors

• active galactic nuclei

• galaxy clusters

§ Thomson scattering takes places during...
• decoupling of CMB photons

necessary conditions: 

ü high-energy photons

ü low-velocity electrons

ü low-energy photons

ü high-velocity electrons

ü low-energy photons

ü low-velocity electrons

highly relevant in astrophysics...
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As the universe cooled, the electrons and protons “recombined” into normal

hydrogen, and the universe suddenly became transparent.
early Universe plasma
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hot, and ionized.

But in the early universe, when it was much warmer, the gas would have been

ionized, and the universe opaque to light—as if you were in a dense fog.

As the universe cooled, the electrons and protons “recombined” into normal
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But in the early universe, when it was much warmer, the gas would have been
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The cosmic microwave

background (CMB) radiation
Regular hydrogen gas lets light pass through more or less unimpeded.  This is

the case today, where the hydrogen gas is either cold and atomic, or very thin,

hot, and ionized.

But in the early universe, when it was much warmer, the gas would have been

ionized, and the universe opaque to light—as if you were in a dense fog.

As the universe cooled, the electrons and protons “recombined” into normal

hydrogen, and the universe suddenly became transparent.
early Universe plasma ‘late’ Universe atoms + free CMB photons

decoupling condition fulfilled for 

Tdec= 0.27eV
zdec= 1090



Scattering Effects Thomson scattering

§ inverse Compton scattering
• galaxy clusters

  

Direct Inverse

Hydra A – optical



Scattering Effects Thomson scattering

§ inverse Compton scattering
• galaxy clusters

  

Direct Inverse

Hydra A – X-rays



Scattering Effects Thomson scattering

§ inverse Compton scattering
• galaxy clusters

  

Direct Inverse

Hydra A – X-rays



Scattering Effects Thomson scattering

§ inverse Compton scattering
• galaxy clusters

  

Direct Inverse

Hydra A – X-rays

galaxy clusters are filled with
 an extremely hot electron gas!



Scattering Effects Thomson scattering

§ inverse Compton scattering
• galaxy clusters

  

Direct Inverse

Hydra A – X-rays

galaxy clusters are filled with
 an extremely hot electron gas!

but what about photons?
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• galaxy clusters:                       Sunyaev-Zel’dovich effect
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Coma cluster of galaxies: SZ map (left, incl. X-ray contours) vs. X-ray map (right), ESA



Scattering Effects

§emission/absorption contributions

§random walk

§photon-electron interactions

§radiative diffusion



Scattering Effects radiative diffusion

• Rosseland approximation

• Eddington approximation



Scattering Effects radiative diffusion

• Rosseland approximation

expression for the energy flux, relating it to the local temperature gradient 



Scattering Effects radiative diffusion

• Rosseland approximation

expression for the energy flux, relating it to the local temperature gradient 

𝐹 𝑧 = −
16𝜎'𝑇(

3𝛼)
𝜕𝑇
𝜕𝑧

1
𝛼)

=
∫ 1
𝛼*
𝑑𝐼*
𝑑𝑇 𝑑𝜈

∫𝑑𝐼*𝑑𝑇 𝑑𝜈
Rosseland mean opacity



Scattering Effects radiative diffusion

• Rosseland approximation

expression for the energy flux, relating it to the local temperature gradient 

𝐹 𝑧 = −
16𝜎'𝑇(

3𝛼)
𝜕𝑇
𝜕𝑧

1
𝛼)

=
∫ 1
𝛼*
𝑑𝐼*
𝑑𝑇 𝑑𝜈

∫𝑑𝐼*𝑑𝑇 𝑑𝜈
Rosseland mean opacity

• Eddington approximation

approximations developed to make the modelling of stars practical...



Scattering Effects radiative diffusion

• Eddington approximation (approximations developed to make the modelling of stars practical...)

𝐼!(𝜏!) = 𝐼!(0)𝑒78- ++
#

8-
𝑒7(8-78-. )	𝑆! 𝜏!; 	𝑑𝜏!;general solution:

star*:

*going all the way from the centre (𝜏 = ∞) to the surface (𝜏 = 0)

𝐼!(𝜏!) = +
#

<
𝑒7(8-.78-)	𝑆! 𝜏!; 	𝑑𝜏!;
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• Eddington approximation (approximations developed to make the modelling of stars practical...)

𝐼!(𝜏!) = 𝐼!(0)𝑒78- ++
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8-
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#

<
𝑒7(8-78-. )	𝑆! 𝜏!; 	𝑑𝜏!;



Scattering Effects radiative diffusion

• Eddington approximation (approximations developed to make the modelling of stars practical...)

𝐼!(𝜏!) = 𝐼!(0)𝑒78- ++
#

8-
𝑒7(8-78-. )	𝑆! 𝜏!; 	𝑑𝜏!;general solution:

star:

frequency-independent: 𝑆!(𝜏!) = 𝑆(𝜏)

𝐼!(𝜏!) = +
#

<
𝑒7(8-78-. )	𝑆! 𝜏!; 	𝑑𝜏!;



Scattering Effects radiative diffusion

• Eddington approximation (approximations developed to make the modelling of stars practical...)

𝐼!(𝜏!) = 𝐼!(0)𝑒78- ++
#

8-
𝑒7(8-78-. )	𝑆! 𝜏!; 	𝑑𝜏!;general solution:

star:

frequency-independent: 𝑆!(𝜏!) = 𝑆(𝜏)
“grey atmosphere” approximation

𝐼!(𝜏!) = +
#

<
𝑒7(8-78-. )	𝑆! 𝜏!; 	𝑑𝜏!;



Scattering Effects radiative diffusion

• Eddington approximation (approximations developed to make the modelling of stars practical...)

𝐼!(𝜏!) = 𝐼!(0)𝑒78- ++
#

8-
𝑒7(8-78-. )	𝑆! 𝜏!; 	𝑑𝜏!;general solution:

star:

frequency-independent: 𝑆! 𝜏! = 𝑆 𝜏 =	?
what is a reasonable relation?

𝐼!(𝜏!) = +
#

<
𝑒7(8-78-. )	𝑆! 𝜏!; 	𝑑𝜏!;



Scattering Effects radiative diffusion

• Eddington approximation (approximations developed to make the modelling of stars practical...)

𝐼!(𝜏!) = 𝐼!(0)𝑒78- ++
#

8-
𝑒7(8-78-. )	𝑆! 𝜏!; 	𝑑𝜏!;general solution:

star:

frequency-independent: 𝑆! 𝜏! = 𝑆 𝜏 = 𝑎 + 𝑏𝜏

𝐼!(𝜏!) = +
#

<
𝑒7(8-78-. )	𝑆! 𝜏!; 	𝑑𝜏!;



Scattering Effects radiative diffusion

• Eddington approximation (approximations developed to make the modelling of stars practical...)

𝐼!(𝜏!) = 𝐼!(0)𝑒78- ++
#

8-
𝑒7(8-78-. )	𝑆! 𝜏!; 	𝑑𝜏!;general solution:

star:

frequency-independent: 𝑆! 𝜏! = 𝑆 𝜏 = 𝑎 + 𝑏𝜏

𝐼!(𝜏!) = +
#

<
𝑒7(8-78-. )𝑆(𝜏;)𝑑𝜏!;

...

𝐼!(𝜏!) = +
#

<
𝑒7(8-78-. )	𝑆! 𝜏!; 	𝑑𝜏!;



Scattering Effects summary

§ equation of radiative transfer

§ scattering (in Astrophysics) = dispersion of a beam of photons by...

• inverse Compton scattering

• Thomson scattering

§ random walk

• net displacement of photons

• number of scattering events

𝑑𝐼!
𝑑𝑠 = − 𝛼! +𝛼!% 𝐼! + 𝑗! ++

&
𝛼!%	𝐼!

𝑑Ω
4𝜋

𝑑 = 𝑁	𝑙

𝑁 = max(𝜏!, 𝜏)


